Global and exponential attractors for a Caginalp type phase-field problem

被引:8
作者
Bangola, Brice Doumbe [1 ]
机构
[1] Univ Poitiers, Lab Math & Applicat, SP2MI, F-86962 Poitiers, France
来源
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS | 2013年 / 11卷 / 09期
关键词
Caginalp phase-field model; Neumann boundary conditions; Well-posedness; Long time behavior of solutions; Global attractor; Exponential attractor; Spatial behavior of solutions; Semi-infinite cylinder; SYSTEM; EQUATIONS; BEHAVIOR;
D O I
10.2478/s11533-013-0258-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with a generalization of the Caginalp phase-field model associated with Neumann boundary conditions. We prove that the problem is well posed, before studying the long time behavior of solutions. We establish the existence of the global attractor, but also of exponential attractors. Finally, we study the spatial behavior of solutions in a semi-infinite cylinder, assuming that such solutions exist.
引用
收藏
页码:1651 / 1676
页数:26
相关论文
共 26 条
[1]  
[Anonymous], 1983, COLLECT MATH APPL MA
[2]  
[Anonymous], 1997, INFINITE DIMENSIONAL
[3]  
Babin A., 1995, Journal of Dynamics and Differential Equations, V7, P567, DOI 10.1007/BF02218725
[4]  
Bates P. W., 1992, J DYN DIFFER EQU, V4, P375
[5]  
Brochet D., 1993, Applicable Analysis, V49, P197, DOI 10.1080/00036819108840173
[6]   FINITE-DIMENSIONAL EXPONENTIAL ATTRACTOR FOR A MODEL FOR ORDER-DISORDER AND PHASE-SEPARATION [J].
BROCHET, D ;
HILHORST, D ;
NOVICKCOHEN, A .
APPLIED MATHEMATICS LETTERS, 1994, 7 (03) :83-87
[7]   UNIVERSAL ATTRACTOR AND INERTIAL SETS FOR THE PHASE FIELD MODEL [J].
BROCHET, D ;
HILHORST, D .
APPLIED MATHEMATICS LETTERS, 1991, 4 (06) :59-62
[8]   THE ROLE OF MICROSCOPIC ANISOTROPY IN THE MACROSCOPIC BEHAVIOR OF A PHASE-BOUNDARY [J].
CAGINALP, G .
ANNALS OF PHYSICS, 1986, 172 (01) :136-155
[9]   ON A THEORY OF HEAT CONDUCTION INVOLVING 2 TEMPERATURES [J].
CHEN, PJ .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1968, 19 (04) :614-&
[10]  
Cherfils L., 2007, Adv. Math. Sci. Appl, V17, P107