Subspace correction multi-level methods for elliptic eigenvalue problems

被引:12
作者
Chan, TF
Sharapov, I
机构
[1] Sun Microsyst Inc, Palo Alto, CA 94303 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
domain decomposition; multigrid; eigenvalues;
D O I
10.1002/nla.238
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we apply the ideas of domain decomposition and multi-grid methods to PDE-based eigenvalue problems represented in two equivalent variational formulations. To find the lowest eigenpair, we use a "subspace correction" framework for deriving the multiplicative algorithm for minimizing the Rayleigh quotient of the current iteration. By considering an equivalent minimization formulation proposed by Mathew and Reddy, we can use the theory of multiplicative Schwarz algorithms for non-linear optimization developed by Tai and Espedal to analyse the convergence properties of the proposed algorithm. We discuss the application of the multiplicative algorithm to the problem of simultaneous computation of several eigenfunctions also formulated in a variational form. Numerical results are presented. Copyright (C) 2001 John Wiley Sons, Ltd.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 22 条
[11]  
Hestenes M. R., 1953, NBS APPL MATH SER, V29, P89
[12]  
KASCHIEV M, 1988, COMPUTATIONAL PROCES, P160
[13]   PRECONDITIONED GRADIENT-TYPE ITERATIVE METHODS IN A SUBSPACE FOR PARTIAL GENERALIZED SYMMETRICAL EIGENVALUE PROBLEMS [J].
KNYAZEV, AV ;
SKOROKHODOV, AL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (04) :1226-1239
[14]  
LUI S, IN PRESS J COMPUTATI
[15]  
MALIASSOV S, 1992, NUMER METHODS MATH M, P70
[16]   DEVELOPMENT AND ANALYSIS OF A NEURAL-NETWORK APPROACH TO PISARENKO HARMONIC RETRIEVAL METHOD [J].
MATHEW, G ;
REDDY, VU .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (03) :663-667
[17]  
McCormick SF, 1992, MULTILEVEL PROJECTIO
[18]  
PARLETT B, 1980, SYMMETRIC EIGENVLAUE
[19]  
STATHOPOULOS A, 1995, P 7 COPP MOUNT C MUL
[20]  
TAI XC, 1997, IN PRESS SIAM J NUME