Coherent Thermoelectric Power from Graphene Quantum Dots

被引:31
作者
Zhao, Mali [1 ]
Kim, Dohyun [1 ]
Van Luan Nguyen [2 ]
Jiang, Jinbao [1 ,2 ]
Sun, Linfeng [1 ]
Lee, Young Hee [1 ,2 ]
Yang, Heejun [1 ]
机构
[1] Sungkyunkwan Univ, Dept Energy Sci, Suwon 16419, South Korea
[2] Sungkyunkwan Univ, Inst Basic Sci, IBS Ctr Integrated Nanostruct Phys CINAP, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
Quantum confinement; graphene quantum dots; coherent thermoelectric power; quasi-bound state electrons; thermoelectric applications; THERMOPOWER; FIGURE; STRAIN;
D O I
10.1021/acs.nanolett.8b03208
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The quantum confinement of charge carriers has been a promising approach to enhance the efficiency of thermoelectric devices, by lowering the dimension of materials and raising the boundary phonon scattering rate. The role of quantum confinement in thermoelectric efficiency has been investigated by using macroscopic device-scale measurements based on diffusive electron transport with the thermal de Broglie wavelength of the electrons. Here, we report a new class of thermoelectric operation originating from quasibound state electrons in low-dimensional materials. Coherent thermoelectric power from confined charges was observed at room temperature in graphene quantum dots with diameters of several nanometers. The graphene quantum dots, electrostatically defined as circular n-p-n junctions to isolate charges in the p-type graphene quantum dots, enabled thermoelectric microscopy at the atomic scale, revealing weakly localized and coherent thermoelectric power generation. The conceptual thermoelectric operation provides new insights, selectively enhancing coherent thermoelectric power via resonant states of charge carriers in low-dimensional materials.
引用
收藏
页码:61 / 68
页数:8
相关论文
共 36 条
[1]   Polycrystalline Graphene with Single Crystalline Electronic Structure [J].
Brown, Lola ;
Lochocki, Edward B. ;
Avila, Jose ;
Kim, Cheol-Joo ;
Ogawa, Yui ;
Havener, Robin W. ;
Kim, Dong-Ki ;
Monkman, Eric J. ;
Shai, Daniel E. ;
Wei, Haofei I. ;
Levendorf, Mark P. ;
Asensio, Maria ;
Shen, Kyle M. ;
Park, Jiwoong .
NANO LETTERS, 2014, 14 (10) :5706-5711
[2]   Transport properties of quantum dot arrays [J].
Cai, Jianwei ;
Mahan, G. D. .
PHYSICAL REVIEW B, 2008, 78 (03)
[3]   ENERGY DISPERSION OF IMAGE STATES AND SURFACE-STATES NEAR THE SURFACE-BRILLOUIN-ZONE BOUNDARY [J].
CHEN, CT ;
SMITH, NV .
PHYSICAL REVIEW B, 1987, 35 (11) :5407-5412
[4]  
Cho S, 2013, NAT MATER, V12, P913, DOI [10.1038/nmat3708, 10.1038/NMAT3708]
[5]   New directions for low-dimensional thermoelectric materials [J].
Dresselhaus, Mildred S. ;
Chen, Gang ;
Tang, Ming Y. ;
Yang, Ronggui ;
Lee, Hohyun ;
Wang, Dezhi ;
Ren, Zhifeng ;
Fleurial, Jean-Pierre ;
Gogna, Pawan .
ADVANCED MATERIALS, 2007, 19 (08) :1043-1053
[6]   Epitaxial Graphene on Cu(111) [J].
Gao, Li ;
Guest, Jeffrey R. ;
Guisinger, Nathan P. .
NANO LETTERS, 2010, 10 (09) :3512-3516
[7]  
Gutiérrez C, 2016, NAT PHYS, V12, P1069, DOI [10.1038/NPHYS3806, 10.1038/nphys3806]
[8]  
Gutiérrez C, 2016, NAT PHYS, V12, P950, DOI [10.1038/NPHYS3776, 10.1038/nphys3776]
[9]   Thermopower of gapped bilayer graphene [J].
Hao, Lei ;
Lee, T. K. .
PHYSICAL REVIEW B, 2010, 81 (16)
[10]   Quantum dot superlattice thermoelectric materials and devices [J].
Harman, TC ;
Taylor, PJ ;
Walsh, MP ;
LaForge, BE .
SCIENCE, 2002, 297 (5590) :2229-2232