Locally Symmetric Graphs of Girth 4

被引:2
作者
Perles, Micha A. [1 ]
Martini, Horst [2 ]
Kupitz, Yaakov S. [1 ]
机构
[1] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
[2] TU Chemnitz, Fak Math, D-09107 Chemnitz, Germany
关键词
automorphism group; bipartite graph; Heawood and co-Heawood graph; Coxeter graph; Fano plane; girth of a graph; (hyperbolic) honeycomb; Klein map {7; 3}8; k-regular graph; locally symmetric graph; matching; 120-cell; Petersen graph; regular dodecahedron; Riemann surface; tessellation; bathroom tiling; MSC (2000):05C12; 05C30; 51E30; 94C15;
D O I
10.1002/jgt.21657
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify the family of connected, locally symmetric graphs of girth 4 (finite and infinite). They are all regular, with the exception of the complete bipartite graph Km,n(2m<n). There are, up to isomorphism, exactly four such k-regular graphs for every 4k<, one for k=2, two for k=3, and exactly three for every infinite cardinal k. In the last paragraph, we consider locally symmetric graphs of girth >4.
引用
收藏
页码:44 / 65
页数:22
相关论文
共 21 条
  • [1] [Anonymous], GEN PETERSEN GRAPH
  • [2] Brannan D. A., 1999, GEOMETRY
  • [3] Brouwer A.E., 1989, DISTANCE REGULAR GRA
  • [4] The tetrakisoctahedral group of the Dyck graph and its molecular realization
    Ceulemans, A
    Lijnen, E
    Ceulemans, LJ
    Fowler, PW
    [J]. MOLECULAR PHYSICS, 2004, 102 (11-12) : 1149 - 1163
  • [5] A census of semisymmetric cubic graphs on up to 768 vertices
    Conder, M
    Malnic, A
    Marusic, D
    Potocnik, P
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2006, 23 (03) : 255 - 294
  • [6] Coxeter H.S.M., 1980, Generators and relations for discrete groups, V4th
  • [7] Coxeter H. S. M., 1973, Regular polytopes, V3rd
  • [8] COXETER HSM, 1983, P LOND MATH SOC, V46, P117
  • [9] Dyck W., 1880, MATH ANN, V17, P473, DOI 10.1007/BF01446929
  • [10] Karcher H., 1999, EIGHTFOLD WAY, V35, P9