Predicting the variation of stacking fault energy for binary Cu alloys by first-principles calculations

被引:20
作者
Cai, T. [1 ,2 ]
Li, K. Q. [2 ,3 ]
Zhang, Z. J. [2 ]
Zhang, P. [2 ]
Liu, R. [2 ]
Yang, J. B. [2 ,3 ]
Zhang, Z. F. [2 ,3 ]
机构
[1] Xuchang Univ, Coll Adv Mat & Energy, Inst Surface Micro & Nano Mat, Key Lab Micronano Mat Energy Storage & Convers He, Xuchang 461000, Peoples R China
[2] Chinese Acad Sci, Inst Met Res, Lab Fatigue & Fracture Mat, Shenyang 110016, Peoples R China
[3] Univ Sci & Technol China, Sch Mat Sci & Engn, Hefei 230026, Peoples R China
来源
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY | 2020年 / 53卷
基金
中国国家自然科学基金;
关键词
Cu-alloy; Deformation behavior; First-principles calculation; Stacking fault energy; HIGH-STRENGTH; SUZUKI SEGREGATION; DEFORMATION; DISLOCATION; DUCTILITY; AL;
D O I
10.1016/j.jmst.2020.04.027
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The variation of stacking fault energy (SFE) in a number of binary Cu alloys is predicted through considering the Suzuki segregation by the full potential linearly augmented plane wave (FPLAPW) method. The calculated results show that some solute atoms (Mg, Al, Si, Zn, Ga, Ge, Cd, Sn, and Pb), which prefer to form the Suzuki segregation, may decrease the value of SFE; while the others (Ti, Mn, Fe, Ni, Zr, Ag, and Au), which do not cause the Suzuki segregation may not decrease the SFE. Furthermore, it is interesting to find that the former alloying elements are located on the right of Cu group while the latter on the left of Cu group in the periodic table of elements. The intrinsic reasons for the new findings can be traced down to the valences electronic structure of solute and Cu atoms, i.e., the similarity of valence electronic structure between solute and Cu atoms increases the value of SFE, while the difference decreases the value of SFE. (C) 2020 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:61 / 65
页数:5
相关论文
共 28 条
[1]   High strength and utilizable ductility of bulk ultrafine-grained Cu-Al alloys [J].
An, X. H. ;
Han, W. Z. ;
Huang, C. X. ;
Zhang, P. ;
Yang, G. ;
Wu, S. D. ;
Zhang, Z. F. .
APPLIED PHYSICS LETTERS, 2008, 92 (20)
[2]  
[Anonymous], DEFORMATION TWINNING
[3]  
Blaha P., 2013, COMPUTER CODEWIEN2K
[4]   Competition between slip and twinning in face-centered cubic metals [J].
Cai, T. ;
Zhang, Z. J. ;
Zhang, P. ;
Yang, J. B. ;
Zhang, Z. F. .
JOURNAL OF APPLIED PHYSICS, 2014, 116 (16)
[5]   Strain hardening behavior of aluminum alloyed Hadfield steel single crystals [J].
Canadinc, D ;
Sehitoglu, H ;
Maier, HJ ;
Chumlyakov, YI .
ACTA MATERIALIA, 2005, 53 (06) :1831-1842
[6]   Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel [J].
Dumay, A. ;
Chateau, J. -P. ;
Allain, S. ;
Migot, S. ;
Bouaziz, O. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 483-84 :184-187
[7]   High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development -: properties -: application [J].
Grässel, O ;
Krüger, L ;
Frommeyer, G ;
Meyer, LW .
INTERNATIONAL JOURNAL OF PLASTICITY, 2000, 16 (10-11) :1391-1409
[8]   Deformation induced microtwins and stacking faults in aluminum single crystal [J].
Han, W. Z. ;
Cheng, G. M. ;
Li, S. X. ;
Wu, S. D. ;
Zhang, Z. F. .
PHYSICAL REVIEW LETTERS, 2008, 101 (11)
[9]   Combined effects of crystallographic orientation, stacking fault energy and grain size on deformation twinning in fcc crystals [J].
Han, W. Z. ;
Zhang, Z. F. ;
Wu, S. D. ;
Li, S. X. .
PHILOSOPHICAL MAGAZINE, 2008, 88 (24) :3011-3029
[10]   Impact of nanodiffusion on the stacking fault energy in high-strength steels [J].
Hickel, T. ;
Sandloebes, S. ;
Marceau, R. K. W. ;
Dick, A. ;
Bleskov, I. ;
Neugebauer, J. ;
Raabe, D. .
ACTA MATERIALIA, 2014, 75 :147-155