Nano-graining a particle-strengthened high-entropy alloy

被引:41
作者
Lee, Dong-Hyun [1 ]
Park, Jeong-Min [2 ]
Yang, Guanghui [2 ]
He, Junyang [1 ]
Lu, Zhaoping [3 ]
Suh, Jin-Yoo [4 ]
Kawasaki, Megumi [5 ]
Ramamurty, Upadrasta [6 ]
Jang, Jae-il [2 ]
机构
[1] Max Planck Inst Eisenforsch GmbH, Dept Microstruct Phys & Alloy Design, D-40237 Dusseldorf, Germany
[2] Hanyang Univ, Div Mat Sci & Engn, Seoul 133791, South Korea
[3] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 10083, Peoples R China
[4] Korea Inst Sci & Technol, High Temp Energy Mat Res Ctr, Seoul 136791, South Korea
[5] Oregon State Univ, Sch Mech Ind & Mfg Engn, Corvallis, OR 97331 USA
[6] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
High-entropy alloy; Particle strengthening; Grain boundary strengthening; High-pressure torsion; Nanoindentation; COARSE 2ND-PHASE PARTICLES; SEVERE PLASTIC-DEFORMATION; HALL-PETCH RELATIONSHIP; MECHANICAL-PROPERTIES; ACTIVATION VOLUME; RATE SENSITIVITY; PHASE-STABILITY; NANOCRYSTALLINE; BEHAVIOR; MICROSTRUCTURE;
D O I
10.1016/j.scriptamat.2018.12.033
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The possibility of further enhancing the strength of a (CoCrFeNi)(94)Ti2Al4 high-entropy alloy (HEA), which is already strengthened by Ni-3(Ti,Al) second-phase particles, by grain refinement through high-pressure torsion (HPT) is examined. Concomitant with nanograin formation, HPT was found to induce particle dissolution and structural transformation of the remnant particles. Nanoindentation experiments of nanocrystalline HEA, with and without particles in the pre-HPT microstructure, suggests that grain boundary strengthening is the dominant strengthening mechanism. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:24 / 28
页数:5
相关论文
共 53 条
[1]   The effect of coarse second-phase particles on the rate of grain refinement during severe deformation processing [J].
Apps, PJ ;
Bowen, JR ;
Prangnell, PB .
ACTA MATERIALIA, 2003, 51 (10) :2811-2822
[2]   Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins [J].
Asaro, RJ ;
Suresh, S .
ACTA MATERIALIA, 2005, 53 (12) :3369-3382
[3]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[4]   Multicomponent and High Entropy Alloys [J].
Cantor, Brian .
ENTROPY, 2014, 16 (09) :4749-4768
[5]   Nanoscale room temperature creep of nanocrystalline nickel pillars at low stresses [J].
Choi, In-Chul ;
Kim, Yong-Jae ;
Seok, Moo-Young ;
Yoo, Byung-Gil ;
Kim, Ju-Young ;
Wang, Yinmin ;
Jang, Jae-il .
INTERNATIONAL JOURNAL OF PLASTICITY, 2013, 41 :53-64
[6]   Estimating the stress exponent of nanocrystalline nickel: Sharp vs. spherical indentation [J].
Choi, In-Chul ;
Yoo, Byung-Gil ;
Kim, Yong-Jae ;
Seok, Moo-Young ;
Wang, Yinmin ;
Jang, Jae-il .
SCRIPTA MATERIALIA, 2011, 65 (04) :300-303
[7]   Deformation behaviour and microstructure of nanocrystalline electrodeposited and high pressure torsioned nickel [J].
Dalla Torre, F ;
Spätig, P ;
Schäublin, R ;
Victoria, M .
ACTA MATERIALIA, 2005, 53 (08) :2337-2349
[8]   Toward a quantitative understanding of mechanical behavior of nanocrystalline metals [J].
Dao, M. ;
Lu, L. ;
Asaro, R. J. ;
De Hosson, J. T. M. ;
Ma, E. .
ACTA MATERIALIA, 2007, 55 (12) :4041-4065
[9]   NANOCRYSTALLINE MATERIALS [J].
BIRRINGER, R .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1989, 117 :33-43
[10]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158