OPTICAL SOLITON SOLUTIONS OF THE FRACTIONAL PERTURBED NONLINEAR SCHRODINGER EQUATION

被引:0
作者
Ali, Khalid Karam [1 ]
Karakoc, Seydi Battal Gazi [2 ]
Rezazadeh, Hadi [3 ]
机构
[1] AL Azhar Univ Nasr City, Fac Sci, Dept Math, PN Box 11884, Cairo, Egypt
[2] Nevsehir Haci Bektas Veli Univ, Dept Math, Fac Sci & Art, TR-50300 Nevsehir, Turkey
[3] Amol Univ Special Modern Technol, Fac Engn Technol, Amol, Iran
来源
TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS | 2020年 / 10卷 / 04期
关键词
The fractional perturbed nonlinear Schrodinger equation; Kudryashov method; optical solutions; soliton; WAVE SOLUTIONS; EW;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is interested in a set of conformable fractional derivative for constructing optical soliton solutions to the fractional perturbed nonlinear Schrodinger equation. The powerful Kudryashov method is the integration scheme that has been implemented to retrieve the solitary wave solutions. After converting equation to integer-ordered ordinary differential equations, replacing the suggested form for the solution into the integer-ordered ordinary differential equations, the nonzero coefficients in solutions are detected. Some graphical illustrations of the obtained solutions for the different cases are drawn. Our results prove the correctness and durableness of the method which can be further used for solving such problems appearing in plasma physics, optical fibers, fluid dynamics, nonlinear optics etc.
引用
收藏
页码:930 / 939
页数:10
相关论文
共 37 条
[11]   Optical solitons having weak non-local nonlinearity by two integration schemes [J].
Biswas, Anjan ;
Rezazadeh, Hadi ;
Mirzazadeh, Mohammad ;
Eslami, Mostafa ;
Zhou, Qin ;
Moshokoa, Seithuti P. ;
Belic, Milivoj .
OPTIK, 2018, 164 :380-384
[12]   Dark, bright optical and other solitons with conformable space-time fractional second-order spatiotemporal dispersion [J].
Bulut, Hasan ;
Sulaiman, Tukur Abdulkadir ;
Baskonus, Haci Mehmet .
OPTIK, 2018, 163 :1-7
[13]   On the solitary wave solutions to the longitudinal wave equation in MEE circular rod [J].
Bulut, Hasan ;
Sulaiman, Tukur Abdulkadir ;
Baskonus, Haci Mehmet .
OPTICAL AND QUANTUM ELECTRONICS, 2018, 50 (02)
[14]   Dynamics of soliton solutions in the chiral nonlinear Schrodinger equations [J].
Bulut, Hasan ;
Sulaiman, Tukur Abdulkadir ;
Demirdag, Betul .
NONLINEAR DYNAMICS, 2018, 91 (03) :1985-1991
[15]   The first integral method applied to the Bogoyavlenskii equations by means of conformable fractional derivative [J].
Eslami, Mostafa ;
Khodadad, Farid Samsami ;
Nazari, Fakhroddin ;
Rezazadeh, Hadi .
OPTICAL AND QUANTUM ELECTRONICS, 2017, 49 (12)
[16]   Variable coefficient equations of the Kadomtsev-Petviashvili hierarchy: multiple soliton solutions and singular multiple soliton solutions [J].
Jaradat, H. M. ;
Al-Shara, Safwan ;
Awawdeh, Fadi ;
Alquran, Marwan .
PHYSICA SCRIPTA, 2012, 85 (03)
[17]   A new numerical application of the generalized Rosenau-RLW equation [J].
Karakoc, S. B. G. .
SCIENTIA IRANICA, 2020, 27 (02) :772-783
[18]   A new definition of fractional derivative [J].
Khalil, R. ;
Al Horani, M. ;
Yousef, A. ;
Sababheh, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 264 :65-70
[19]   Soliton solutions of the conformable fractional Zakharov-Kuznetsov equation with dual-power law nonlinearity [J].
Khodadad, Farid Samsami ;
Nazari, Fakhroddin ;
Eslami, Mostafa ;
Rezazadeh, Hadi .
OPTICAL AND QUANTUM ELECTRONICS, 2017, 49 (11)
[20]   One method for finding exact solutions of nonlinear differential equations [J].
Kudryashov, Nikolay A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (06) :2248-2253