T-SEMISIMPLE MODULES AND T-SEMISIMPLE RINGS

被引:24
作者
Asgari, Sh. [1 ,2 ]
Haghany, A. [1 ]
Tolooei, Y. [1 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
Nonsingular and Z; (2)-torsion modules; T-essential submodules; T-semisimple modules;
D O I
10.1080/00927872.2011.653065
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define and investigate t-semisimple modules as a generalization of semisimple modules. A module M is called t-semisimple if every submodule N contains a direct summand K of M such that K is t-essential in N. T-semisimple modules are Morita invariant and they form a strict subclass of t-extending modules. Many equivalent conditions for a module M to be t-semisimple are found. Accordingly, M is t-semisiple, if and only if, M=Z(2)(M) circle plus S(M) (where Z(2)(M) is the Goldie torsion submodule and S(M) is the sum of nonsingular simple submodules). A ring R is called right t-semisimple if R-R is t-semisimple. Various characterizations of right t-semisimple rings are given. For some types of rings, conditions equivalent to being t-semisimple are found, and this property is investigated in terms of chain conditions.
引用
收藏
页码:1882 / 1902
页数:21
相关论文
共 14 条
[1]  
[Anonymous], 1992, RINGS CATEGORIES MOD
[2]  
[Anonymous], 2003, CAMBRIDGE TRACTS MAT, DOI DOI 10.1017/CBO9780511546525
[3]   t-EXTENDING MODULES AND t-BAER MODULES [J].
Asgari, Sh. ;
Haghany, A. .
COMMUNICATIONS IN ALGEBRA, 2011, 39 (05) :1605-1623
[4]   ENDOMORPHISM-RINGS OF MODULES OVER NON-SINGULAR CS RINGS [J].
CHATTERS, AW ;
KHURI, SM .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1980, 21 (JUN) :434-444
[5]   On Noetherian rings with essential socle [J].
Chen, JL ;
Ding, NQ ;
Yousif, MF .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 76 :39-49
[6]  
Clark J, 2006, FRONT MATH, P1
[7]  
Dung N. V., 1994, PITMAN RES NOTES MAT, V313
[8]  
Kosan T., 2004, Turkish J. Math, V28, P177
[9]  
Lam TY, 1998, GRADUATE TEXTS MATH, V189
[10]   Strong lifting [J].
Nicholson, WK ;
Zhou, Y .
JOURNAL OF ALGEBRA, 2005, 285 (02) :795-818