A compact finite difference scheme for 2D reaction-diffusion singularly perturbed problems

被引:13
|
作者
Gracia, J. L. [1 ]
Clavero, C. [1 ]
机构
[1] Univ Zaragoza, Dept Appl Math, Zaragoza, Spain
关键词
singular perturbation; reaction-diffusion; uniform convergence; Shishkin mesh; HOC scheme;
D O I
10.1016/j.cam.2005.04.056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we define a compact finite difference scheme of positive type to solve a class of 2D reaction-diffusion elliptic singularly perturbed problems. We prove that if the new scheme is constructed on a piecewise uniform mesh of Shishkin type, it provides better approximations than the classical central finite difference scheme. Moreover, the uniform parameter bound of the error shows that the scheme is third order convergent in the maximum norm when the singular perturbation parameter is sufficiently small. Some numerical experiments illustrate in practice the result of convergence proved theoretically. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:152 / 167
页数:16
相关论文
共 50 条
  • [1] On the uniform convergence of a finite difference scheme for time dependent singularly perturbed reaction-diffusion problems
    Clavero, C.
    Gracia, J. L.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (05) : 1478 - 1488
  • [2] An almost third order finite difference scheme for singularly perturbed reaction-diffusion systems
    Clavero, C.
    Gracia, J. L.
    Lisbona, F. J.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (08) : 2501 - 2515
  • [3] A New Numerical Scheme for Singularly Perturbed Reaction-Diffusion Problems
    Temel, Zelal
    Cakir, Musa
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2023, 36 (02): : 792 - 805
  • [4] A high order HODIE finite difference scheme for 1D parabolic singularly perturbed reaction-diffusion problems
    Clavero, C.
    Gracia, J. L.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) : 5067 - 5080
  • [5] A high-order finite difference scheme for a singularly perturbed reaction-diffusion problem with an interior layer
    Zhongdi Cen
    Anbo Le
    Aimin Xu
    Advances in Difference Equations, 2017
  • [6] A high-order finite difference scheme for a singularly perturbed reaction-diffusion problem with an interior layer
    Cen, Zhongdi
    Le, Anbo
    Xu, Aimin
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [7] Pointwise error estimate of the LDG method for 2D singularly perturbed reaction-diffusion problem
    Wang, Xuesong
    Jiang, Shan
    Cheng, Yao
    NUMERICAL ALGORITHMS, 2024,
  • [8] A splitting based higher-order numerical scheme for 2D time-dependent singularly perturbed reaction-diffusion problems
    Mohapatra, J.
    Govindarao, L.
    Priyadarshana, S.
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [9] Accelerated fitted operator finite difference method for singularly perturbed parabolic reaction-diffusion problems
    Bullo, Tesfaye Aga
    Duressa, Gemechis File
    Degla, Guy Aymard
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2021, 9 (03): : 886 - 898
  • [10] Finite elements scheme in enriched subspaces for singularly perturbed reaction-diffusion problems on a square domain
    Jung, Chang-Yeol
    ASYMPTOTIC ANALYSIS, 2008, 57 (1-2) : 41 - 69