Accomplishing simple, solubility-based separations of rare earth elements with complexes bearing size-sensitive molecular apertures

被引:66
作者
Bogart, Justin A. [1 ]
Cole, Bren E. [1 ]
Boreen, Michael A. [1 ]
Lippincott, Connor A. [1 ]
Manor, Brian C. [1 ]
Carroll, Patrick J. [1 ]
Schelter, Eric J. [1 ]
机构
[1] Univ Penn, Dept Chem, P Roy & Diana Vagelos Labs, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
rare earth elements; lanthanides; separations; critical materials; coordination chemistry; LIFE-CYCLE; RECOVERY; NEODYMIUM; PHOSPHORS; WASTE; CHALLENGES; MAGNETS; METALS; CERIUM;
D O I
10.1073/pnas.1612628113
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Rare earth (RE) metals are critical components of electronic materials and permanent magnets. Recycling of consumer materials is a promising new source of rare REs. To incentivize recycling, there is a clear need for the development of simple methods for targeted separations of mixtures of RE metal salts. Metal complexes of a tripodal hydroxylaminato ligand, TriNO(x)(3-), featured a size-sensitive aperture formed of its three eta(2)-(N,O) ligand arms. Exposure of cations in the aperture induced a self-associative equilibrium comprising RE(TriNOx)THF and [RE(TriNOx)](2) species. Differences in the equilibrium constants K-dimer for early and late metals enabled simple separations through leaching. Separations were performed on RE1/RE2 mixtures, where RE1 = La-Sm and RE2 = Gd-Lu, with emphasis on Eu/Y separations for potential applications in the recycling of phosphor waste from compact fluorescent light bulbs. Using the leaching method, separations factors approaching 2,000 were obtained for early-late RE combinations. Following solvent optimization, >95% pure samples of Eu were obtained with a 67% recovery for the technologically relevant Eu/Y separation.
引用
收藏
页码:14887 / 14892
页数:6
相关论文
共 49 条
[1]   Evaluating Rare Earth Element Availability: A Case with Revolutionary Demand from Clean Technologies [J].
Alonso, Elisa ;
Sherman, Andrew M. ;
Wallington, Timothy J. ;
Everson, Mark P. ;
Field, Frank R. ;
Roth, Richard ;
Kirchain, Randolph E. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (06) :3406-3414
[2]  
[Anonymous], 2011, CHILD MALTREATMENT, P1
[3]   Progress in high-power nickel-metal hydride batteries [J].
Baeuerlein, Peter ;
Antonius, Christina ;
Loeffler, Jens ;
Kuempers, Joerg .
JOURNAL OF POWER SOURCES, 2008, 176 (02) :547-554
[4]   Rare Earth Recycling: Forecast of Recoverable Nd from Shredder Scrap and Influence of Recycling Rates on Price Volatility [J].
Bandara H.M.D. ;
Mantell M.A. ;
Darcy J.W. ;
Emmert M.H. .
Journal of Sustainable Metallurgy, 2015, 1 (03) :179-188
[5]   Rare earth recovery from end-of-life motors employing green chemistry design principles [J].
Bandara, H. M. Dhammika ;
Field, Kathleen D. ;
Emmert, Marion H. .
GREEN CHEMISTRY, 2016, 18 (03) :753-759
[6]   Closing the Lifecycle of Rare Earth Magnets: Discovery of Neodymium in Slag from Steel Mills [J].
Bandara, H. M. Dhammika ;
Mantell, Mark A. ;
Darcy, Julia W. ;
Emmert, Marion H. .
ENERGY TECHNOLOGY, 2015, 3 (02) :118-120
[7]   Value Analysis of Neodymium Content in Shredder Feed: Toward Enabling the Feasibility of Rare Earth Magnet Recycling [J].
Bandara, H. M. Dhammika ;
Darcy, Julia W. ;
Apelian, Diran ;
Emmert, Marion H. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (12) :6553-6560
[8]   Perspectives for the recovery of rare earths from end-of-life fluorescent lamps [J].
Binnemans, K. ;
Jones, P. T. .
JOURNAL OF RARE EARTHS, 2014, 32 (03) :195-200
[9]   Recycling of rare earths: a critical review [J].
Binnemans, Koen ;
Jones, Peter Tom ;
Blanpain, Bart ;
Van Gerven, Tom ;
Yang, Yongxiang ;
Walton, Allan ;
Buchert, Matthias .
JOURNAL OF CLEANER PRODUCTION, 2013, 51 :1-22
[10]   Controlled Redox Chemistry at Cerium within a Tripodal Nitroxide Ligand Framework [J].
Bogart, Justin A. ;
Lippincott, Connor A. ;
Carroll, Patrick J. ;
Booth, Corwin H. ;
Schelter, Eric J. .
CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (49) :17850-17859