Vortices in a Ginzburg-Landau theory of superconductors with nematic order

被引:4
|
作者
Severino, R. S. [1 ,2 ]
Mininni, P. D. [1 ,2 ]
Fradkin, E. [3 ,4 ]
Bekeris, V. [1 ,2 ]
Pasquini, G. [1 ,2 ]
Lozano, G. S. [1 ,2 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Natur, Dept Fis, RA-1428 Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, Inst Fis Buenos Aires IFIBA, CONICET, RA-1428 Buenos Aires, DF, Argentina
[3] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA
[4] Univ Illinois, Inst Condensed Matter Theory, 1110 West Green St, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
LIQUID-CRYSTAL PHASES; ROTATIONAL SYMMETRY; STATE; RESISTIVITY;
D O I
10.1103/PhysRevB.106.094512
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work we explore the interplay between superconductivity and nematicity in the framework of a Ginzburg-Landau theory with a nematic order parameter coupled to the superconductor order parameter. In particular, we focus on the study of the vortex-vortex interaction in order to determine the way nematicity affects its attractive or repulsive character. To do so, we use a dynamical method based on the solutions of the time-dependent Ginzburg-Landau equations in a bulk superconductor. An important contribution of our work is the implementation of a pseudospectral method to solve the dynamics, known to be highly efficient and of very high order in comparison to the usual finite-differences and -elements methods. The coupling between the superconductor and the (real) nematic order parameters is represented by two terms in the free energy: a biquadratic term and a coupling of the nematic order parameter to the covariant derivatives of the superconductor order parameter. Our results show that there is a competing effect: while the former independently of its competitive or cooperative character generates an attractive vortex-vortex interaction, the latter always generates a repulsive interaction.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] GINZBURG-LANDAU THEORY OF VORTICES IN D-WAVE SUPERCONDUCTORS
    BERLINSKY, AJ
    FETTER, AL
    FRANZ, M
    KALLIN, C
    SOININEN, PI
    PHYSICAL REVIEW LETTERS, 1995, 75 (11) : 2200 - 2203
  • [2] GINZBURG-LANDAU THEORY FOR SUPERCONDUCTORS
    CYROT, M
    REPORTS ON PROGRESS IN PHYSICS, 1973, 36 (02) : 103 - 158
  • [3] Stochastic dynamics of Ginzburg-Landau vortices in superconductors
    Deang, J
    Du, Q
    Gunzburger, MD
    PHYSICAL REVIEW B, 2001, 64 (05): : 0525061 - 0525064
  • [4] Entanglement of Vortices in the Ginzburg-Landau Equations for Superconductors
    Enciso, Alberto
    Peralta-Salas, Daniel
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (07)
  • [5] Ginzburg-Landau theory of noncentrosymmetric superconductors
    Mukherjee, Soumya P.
    Mandal, Sudhansu S.
    PHYSICAL REVIEW B, 2008, 77 (01)
  • [6] Nonlocal Ginzburg-Landau theory for superconductors
    Koyama, T.
    Machida, M.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2013, 484 : 100 - 103
  • [7] GINZBURG-LANDAU THEORY OF DEFORMABLE SUPERCONDUCTORS
    SVENSMARK, H
    FALICOV, LM
    PHYSICAL REVIEW B, 1989, 40 (01): : 201 - 209
  • [8] Production of vortices in the dual Ginzburg-Landau theory
    Dobrowolski, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (50): : 10739 - 10746
  • [9] Unconventional vortices in multicomponent Ginzburg-Landau theory
    Pechenik, E
    Rosenstein, B
    Shapiro, BY
    Shapiro, I
    PHYSICAL REVIEW B, 2002, 65 (21) : 1 - 6
  • [10] Ginzburg-Landau theory of vortices in a multigap superconductor
    Zhitomirsky, ME
    Dao, VH
    PHYSICAL REVIEW B, 2004, 69 (05)