ON MAXIMAL INDEPENDENT ARBORESCENCE PACKING

被引:10
作者
Kiraly, Csaba [1 ]
机构
[1] Eotvos Lorand Univ, Dept Operat Res, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
arborescence; packing; matroid;
D O I
10.1137/130938396
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By generalizing the results of [N. Kamiyama, N. Katoh, and A. Takizawa, Combinatorica, 29 (2009), pp. 197-214], we solve the following problem. Given a digraph D = (V, A) and a matroid on a set S = {s(1), . . ., s(k)} along with a map pi : S -> V, find k edge-disjoint arborescences T-1, . . . , T-k with roots pi(s(1)), . . . , pi(s(k)), respectively, such that, for any v is an element of V, the set {s(i) : v is an element of T-i} is independent and its rank reaches the theoretical maximum. We also give a simplified proof for a result of [S. Fujishige, Combinatorica, 30 (2010), pp. 247-252].
引用
收藏
页码:2107 / 2114
页数:8
相关论文
共 13 条
  • [1] BERCZI K., 2010, COMBINATORIAL OPTIMI, P1
  • [2] MATROID-BASED PACKING OF ARBORESCENCES
    de Gevigney, Olivier Durand
    Viet-Hang Nguyen
    Szigeti, Zoltan
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (01) : 567 - 574
  • [3] Edmonds J., 1973, Combinatorial Algorithms, P91
  • [4] Frank A., 2011, Connections in Combinatorial Optimization
  • [5] FRANK A., 1981, C MATH SOC J BOLYAI, V25, P59
  • [6] A NOTE ON DISJOINT ARBORESCENCES
    Fujishige, Satoru
    [J]. COMBINATORICA, 2010, 30 (02) : 247 - 252
  • [7] ARC-DISJOINT IN-TREES IN DIRECTED GRAPHS
    Kamiyama, Naoyuki
    Katoh, Naoki
    Takizawa, Atsushi
    [J]. COMBINATORICA, 2009, 29 (02) : 197 - 214
  • [8] ROOTED-TREE DECOMPOSITIONS WITH MATROID CONSTRAINTS AND THE INFINITESIMAL RIGIDITY OF FRAMEWORKS WITH BOUNDARIES
    Katoh, Naoki
    Tanigawa, Shin-ichi
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (01) : 155 - 185
  • [9] A rooted-forest partition with uniform vertex demand
    Katoh, Naoki
    Tanigawa, Shin-ichi
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 24 (02) : 67 - 98
  • [10] Katoh N, 2009, LECT NOTES COMPUT SC, V5878, P524, DOI 10.1007/978-3-642-10631-6_54