Harmonic forms on manifolds with non-negative Bakry-Aparts per thousandmery-Ricci curvature

被引:18
作者
Vieira, Matheus [1 ]
机构
[1] Univ Fed Espirito Santo, Dept Matemat, BR-29075910 Vitoria, Brazil
关键词
Harmonic forms; Non-negative Bakry-Emery-Ricci curvature; Smooth metric measure spaces; POSITIVE SPECTRUM; LAPLACIAN; HYPERSURFACES; TENSOR;
D O I
10.1007/s00013-013-0594-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that on a complete smooth metric measure space with non-negative Bakry-A parts per thousand mery-Ricci curvature if the space of weighted L (2) harmonic one-forms is non-trivial, then the weighted volume of the manifold is finite and the universal cover of the manifold splits isometrically as the product of the real line with a hypersurface.
引用
收藏
页码:581 / 590
页数:10
相关论文
共 16 条
[1]   The heat kernel weighted Hodge Laplacian on noncompact manifolds [J].
Bueler, EL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (02) :683-713
[2]  
Cao H.-D, 2010, ADV LECT MATH ALM, V11
[3]  
Cao HD, 1997, MATH RES LETT, V4, P637
[4]  
Carron G., 2007, ARXIV07043194
[5]   The structure of weakly stable constant mean curvature hypersurfaces [J].
Cheng, Xu ;
Cheung, Leung-Fu ;
Zhou, Detang .
TOHOKU MATHEMATICAL JOURNAL, 2008, 60 (01) :101-121
[6]   VOLUME ESTIMATE ABOUT SHRINKERS [J].
Cheng, Xu ;
Zhou, Detang .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (02) :687-696
[7]  
Kong SL, 2008, J DIFFER GEOM, V78, P295
[8]  
Li P, 2002, J DIFFER GEOM, V62, P143
[9]  
Li P, 2001, J DIFFER GEOM, V58, P501
[10]  
LI P, 1992, J DIFFER GEOM, V35, P359