Fixed Points on Asymmetric Riemann Surfaces

被引:2
作者
Kozlowska-Walania, Ewa [1 ]
Tyszkowska, Ewa [1 ]
机构
[1] Gdansk Univ, Inst Math, Fac Math Phys & Informat, PL-5780952 Gdansk, Poland
关键词
Riemann surface; symmetry of Riemann surface; asymmetric Riemann surface; pseudo-symmetric Riemann surface; Fuchsian groups; NEC groups; fixed points on Riemann surfaces; fixed point free actions on Riemann surfaces;
D O I
10.1007/s00009-020-01565-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study actions of cyclic groups on asymmetric Riemann surfaces for which all conformal automorphisms of prime orders have the same number of fixed points. We find the sharp upper bound on the number of points fixed by the square of an anticonformal automorphism of an asymmetric surface. Moreover, we determine the minimal genus of an asymmetric Riemann surface on which a given finite groupGacts without fixed points.
引用
收藏
页数:22
相关论文
共 13 条
  • [1] Asymmetric and pseudo-symmetric hyperelliptic surfaces
    Bujalance, E
    Turbek, P
    [J]. MANUSCRIPTA MATHEMATICA, 2002, 108 (01) : 1 - 11
  • [2] PSEUDO-REAL RIEMANN SURFACES AND CHIRAL REGULAR MAPS
    Bujalance, Emilio
    Conder, Marston D. E.
    Costa, Antonio F.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (07) : 3365 - 3376
  • [3] Non-normal pairs of non-Euclidean crystallographic groups
    Estévez, JL
    Izquierdo, M
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 : 113 - 123
  • [4] GORDEJUELA JJE, 1985, ARCH MATH, V45, P374
  • [5] On fixed points of doubly symmetric Riemann surfaces
    Gromadzki, Grzegorz
    Kozlowska-Walania, Ewa
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2008, 50 : 371 - 378
  • [6] Izumi Y., 1982, TRU MATH, V18, P37
  • [7] Kozlowska-Walania E, 2016, KODAI MATH J, V39, P510
  • [8] Kozowska-Walania E, MATH SCAND
  • [9] Kozowska-Walania E, 2015, ANN ACAD SCI FENN-M, V40, P669, DOI [10.5186/aasfm.2015.4040, DOI 10.5186/AASFM.2015.4040]
  • [10] Macbeath A. M., 1973, Bull. London Math. Soc., V5, P103