Cell decomposition of almost smooth real algebraic surfaces

被引:19
作者
Besana, Gian Mario [1 ]
Di Rocco, Sandra [2 ]
Hauenstein, Jonathan D. [3 ]
Sommese, Andrew J. [4 ]
Wampler, Charles W. [5 ]
机构
[1] Depaul Univ, Coll Comp & Digital Media, Chicago, IL 60604 USA
[2] KTH, Dept Math, S-10044 Stockholm, Sweden
[3] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[4] Univ Notre Dame, Dept Appl & Computat Math & Stat, Notre Dame, IN 46556 USA
[5] Gen Motors Res & Dev, Warren, MI 48090 USA
关键词
Algebraic surface; Algebraic curve; Cell decomposition; Numerical algebraic geometry; Homotopy; Polynomial system; COMPUTING SINGULAR SOLUTIONS; POLYNOMIAL SYSTEMS; SOLUTION SETS; HOMOTOPIES; POINTS; ALGORITHM;
D O I
10.1007/s11075-012-9646-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Z be a two dimensional irreducible complex component of the solution set of a system of polynomial equations with real coefficients in N complex variables. This work presents a new numerical algorithm, based on homotopy continuation methods, that begins with a numerical witness set for Z and produces a decomposition into 2-cells of any almost smooth real algebraic surface contained in Z. Each 2-cell (a face) has a generic interior point and a boundary consisting of 1-cells (edges). Similarly, the 1-cells have a generic interior point and a vertex at each end. Each 1-cell and each 2-cell has an associated homotopy for moving the generic interior point to any other point in the interior of the cell, defining an invertible map from the parameter space of the homotopy to the cell. This work draws on previous results for the curve case. Once the cell decomposition is in hand, one can sample the 2-cells and 1-cells to any resolution, limited only by the computational resources available.
引用
收藏
页码:645 / 678
页数:34
相关论文
共 35 条
[1]  
Alberti L, 2007, LECT NOTES COMPUT SC, V4647, P1
[2]   Isotopic triangulation of a real algebraic surface [J].
Alberti, Lionel ;
Mourrain, Bernard ;
Tecourt, Jean-Pierre .
JOURNAL OF SYMBOLIC COMPUTATION, 2009, 44 (09) :1291-1310
[3]   THE LEFSCHETZ THEOREM ON HYPERPLANE SECTIONS [J].
ANDREOTTI, A ;
FRANKEL, T .
ANNALS OF MATHEMATICS, 1959, 69 (03) :713-717
[4]  
[Anonymous], 1987, ACM siggraph computer graphics, DOI [10.1145/37401.37422, DOI 10.1145/37401.37422]
[5]   AN ADJACENCY ALGORITHM FOR CYLINDRICAL ALGEBRAIC DECOMPOSITIONS OF 3-DIMENSIONAL SPACE [J].
ARNON, DS ;
COLLINS, GE ;
MCCALLUM, S .
JOURNAL OF SYMBOLIC COMPUTATION, 1988, 5 (1-2) :163-187
[6]  
Bates D. J., 2012, BERTINI SOFTWARE NUM
[7]  
Bates D. J., 2012, BERTINI SOFTWARE NUM
[8]   A NUMERICAL LOCAL DIMENSION TEST FOR POINTS ON THE SOLUTION SET OF A SYSTEM OF POLYNOMIAL EQUATIONS [J].
Bates, Daniel J. ;
Hauenstein, Jonathan D. ;
Peterson, Chris ;
Sommese, Andrew J. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (05) :3608-3623
[9]   An efficient algorithm for the stratification and triangulation of an algebraic surface [J].
Berberich, Eric ;
Kerber, Michael ;
Sagraloff, Michael .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2010, 43 (03) :257-278
[10]   Isotopic implicit surface meshing [J].
Boissonnat, Jean-Daniel ;
Cohen-Steiner, David ;
Vegter, Gert .
DISCRETE & COMPUTATIONAL GEOMETRY, 2008, 39 (1-3) :138-157