Generating outerplanar graphs uniformly at random

被引:8
作者
Bodirsky, M [1 ]
Kang, M [1 ]
机构
[1] Humboldt Univ, Berlin, Germany
关键词
D O I
10.1017/S0963548305007303
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show how to generate labelled and unlabelled outerplanar graphs with n vertices uniformly at random in polynomial time in n. To generate labelled outerplanar graphs, we present a counting technique using the decomposition of a graph according to its block structure, and compute the exact number of labelled outerplanar graphs. This allows us to make the correct probabilistic choices in a recursive generation of uniformly distributed outerplanar graphs. Next we modify our formulas to also count rooted unlabelled graphs, and finally show how to use these formulas in a Las Vegas algorithm to generate unlabelled outerplanar graphs uniformly at random in expected polynomial time.
引用
收藏
页码:333 / 343
页数:11
相关论文
共 30 条
[1]   A linear-time algorithm for the generation of trees [J].
Alonso, L ;
Remy, JL ;
Schott, R .
ALGORITHMICA, 1997, 17 (02) :162-182
[2]   Random maps, coalescing saddles, singularity analysis, and airy phenomena [J].
Banderier, C ;
Flajolet, P ;
Schaeffer, G ;
Soria, M .
RANDOM STRUCTURES & ALGORITHMS, 2001, 19 (3-4) :194-246
[3]  
Bender EA, 2002, ELECTRON J COMB, V9
[4]  
BIEDL T, 2002, 10 ANN C GRAPH DRAW
[5]  
BODLAENDER HL, 2001, LECT NOTES COMPUTER, V2204, P166
[6]  
Burgisser Peter, 1997, GRUNDLEHREN MATH WIS, V315
[7]  
CHARTRAND G, 1967, ANN I H POINCARE B, V3, P433
[8]   Uniform random generation of decomposable structures using floating-point arithmetic [J].
Denise, A ;
Zimmermann, P .
THEORETICAL COMPUTER SCIENCE, 1999, 218 (02) :233-248
[9]  
Denise A., 1996, C NUMERANTIUM, V113, P61
[10]   Properties of random triangulations and trees [J].
Devroye, L ;
Flajolet, P ;
Hurtado, F ;
Noy, M ;
Steiger, W .
DISCRETE & COMPUTATIONAL GEOMETRY, 1999, 22 (01) :105-117