Estimating Rainfall from Surveillance Audio Based on Parallel Network with Multi-Scale Fusion and Attention Mechanism

被引:6
|
作者
Chen, Mingzheng [1 ,2 ,3 ]
Wang, Xing [1 ,2 ,3 ,4 ]
Wang, Meizhen [1 ,2 ,3 ]
Liu, Xuejun [1 ,2 ,3 ]
Wu, Yong [5 ]
Wang, Xiaochu [1 ,2 ,3 ]
机构
[1] Nanjing Normal Univ, Minist Educ, Key Lab Virtual Geog Environm, Nanjing 210023, Peoples R China
[2] State Key Lab Cultivat Base Geog Environm Evolut, Nanjing 210023, Peoples R China
[3] Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Peoples R China
[4] Univ Vienna, Dept Geog & Reg Res, A-1010 Vienna, Austria
[5] Fujian Normal Univ, Inst Geog, Fuzhou 350000, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
rainfall estimation; surveillance audio; machine learning; multi-scale fusion; CLASSIFICATION; RECOGNITION; RESOLUTION;
D O I
10.3390/rs14225750
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Rainfall data have a profound significance for meteorology, climatology, hydrology, and environmental sciences. However, existing rainfall observation methods (including ground-based rain gauges and radar-/satellite-based remote sensing) are not efficient in terms of spatiotemporal resolution and cannot meet the needs of high-resolution application scenarios (urban waterlogging, emergency rescue, etc.). Widespread surveillance cameras have been regarded as alternative rain gauges in existing studies. Surveillance audio, through exploiting their nonstop use to record rainfall acoustic signals, should be considered a type of data source to obtain high-resolution and all-weather data. In this study, a method named parallel neural network based on attention mechanisms and multi-scale fusion (PNNAMMS) is proposed for automatically classifying rainfall levels by surveillance audio. The proposed model employs a parallel dual-channel network with spatial channel extracting the frequency domain correlation, and temporal channel capturing the time-domain continuity of the rainfall sound. Additionally, attention mechanisms are used on the two channels to obtain significant spatiotemporal elements. A multi-scale fusion method was adopted to fuse different scale features in the spatial channel for more robust performance in complex surveillance scenarios. In experiments showed that our method achieved an estimation accuracy of 84.64% for rainfall levels and outperformed previously proposed methods.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Prompt learning and multi-scale attention for infrared and visible image fusion
    Li, Yanan
    Ji, Qingtao
    Jiao, Shaokang
    INFRARED PHYSICS & TECHNOLOGY, 2025, 145
  • [42] Remote Sensing Image Retrieval Based on Multi-scale Pooling and Norm Attention Mechanism
    Ge, Yun
    Ma, Lin
    Ye, Famao
    Chu, Jun
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2022, 44 (02) : 543 - 551
  • [43] Attention-Based Multi-Scale Prediction Network for Time-Series Data
    Li, Junjie
    Zhu, Lin
    Zhang, Yong
    Guo, Da
    Xia, Xingwen
    CHINA COMMUNICATIONS, 2022, 19 (05) : 286 - 301
  • [44] Arbitrary style transformation algorithm based on multi-scale fusion and compressed attention in art and design
    Wu, Yunan
    Zhang, Haitao
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2024, 18 (03): : 2213 - 2225
  • [45] Multi-Scale Attention-Based Deep Neural Network for Brain Disease Diagnosis
    Liang, Yin
    Xu, Gaoxu
    Rehman, Sadaqat Ur
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (03): : 4645 - 4661
  • [46] Multi-Scale Hybrid Fusion Network for Single Image Deraining
    Jiang, Kui
    Wang, Zhongyuan
    Yi, Peng
    Chen, Chen
    Wang, Guangcheng
    Han, Zhen
    Jiang, Junjun
    Xiong, Zixiang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (07) : 3594 - 3608
  • [47] Wafer defect recognition method based on multi-scale feature fusion
    Chen, Yu
    Zhao, Meng
    Xu, Zhenyu
    Li, Kaiyue
    Ji, Jing
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [48] Impact Load Localization Based on Multi-Scale Feature Fusion Convolutional Neural Network
    Wu, Shiji
    Huang, Xiufeng
    Xu, Rongwu
    Yu, Wenjing
    Cheng, Guo
    SENSORS, 2024, 24 (18)
  • [49] Brain magnetic resonance image registration based on parallel lightweight convolution and multi-scale fusion
    Shen Y.
    Yan Y.
    Song J.
    Liu G.
    Xu J.
    Wei Z.
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2024, 41 (02): : 213 - 219
  • [50] Multi-scale spatial-spectral fusion based on multi-input fusion calculation and coordinate attention for hyperspectral image classification
    Yang, Lina
    Zhang, Fengqi
    Wang, Patrick Shen-Pei
    Li, Xichun
    Meng, Zuqiang
    PATTERN RECOGNITION, 2022, 122