TRANSFER LEARNING ANALYSIS FOR WILDFIRE SEGMENTATION USING PRISMA HYPERSPECTRAL IMAGERY AND CONVOLUTIONAL NEURAL NETWORKS

被引:3
作者
Spiller, Dario [1 ]
Amici, Stefania [2 ]
Ansalone, Luigi [3 ]
机构
[1] Sapienza Univ Rome, Sch Aerosp Engn, Via Salaria 851, I-00138 Rome, Italy
[2] Natl Inst Geophys & Volcanol INGV, Via Vigna Murata 605, I-00143 Rome, Italy
[3] Italian Space Agcy, Via Politecn Snc, I-00133 Rome, Italy
来源
2022 12TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS) | 2022年
关键词
Wildfires; Convolutional Neural Networks; Transfer Learning; PRISMA; Hyperspectral Imagery; MISSION; FIRES;
D O I
10.1109/WHISPERS56178.2022.9955054
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In this work we present a segmentation study of wildfire scenarios using PRISMA hyperspectral data and a methodology based on convolutional neural networks and transfer learning. PRISMA (Precursore IperSpettrale della Missione Applicativa, Hyperspectral Precursor of the Application Mission) is the hyperspectral mission by ASI (Agenzia Spaziale Italiana, Italian Space Agency) launched in 2019 providing images with a spectral range of 0.4-2.5 mu m and an average spectral resolution less than 10 nm. We used the PRISMA hypercube acquired during the Australian bushfires of December 2019 in New South Wales to train a one-dimensional convolutional neural network and perform a transfer learning in the Bootleg Fire of July 2021 in the Fremont-Winema National Forest in Oregon. The generalization ability of the network is discussed and potential future applications are presented.
引用
收藏
页数:5
相关论文
共 26 条
  • [1] Exploring PRISMA Scene for Fire Detection: Case Study of 2019 Bushfires in Ben Halls Gap National Park, NSW, Australia
    Amici, Stefania
    Piscini, Alessandro
    [J]. REMOTE SENSING, 2021, 13 (08)
  • [2] Multi-resolution spectral analysis of wildfire potassium emission signatures using laboratory, airborne and spaceborne remote sensing
    Amici, Stefania
    Wooster, Martin J.
    Piscini, Alessandro
    [J]. REMOTE SENSING OF ENVIRONMENT, 2011, 115 (08) : 1811 - 1823
  • [3] Comparison of fire temperature retrieved from SWIR and TIR hyperspectral data
    Barducci, A
    Guzzi, D
    Marcoionni, P
    Pippi, I
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2004, 46 (1-2) : 1 - 9
  • [4] A Review on Early Forest Fire Detection Systems Using Optical Remote Sensing
    Barmpoutis, Panagiotis
    Papaioannou, Periklis
    Dimitropoulos, Kosmas
    Grammalidis, Nikos
    [J]. SENSORS, 2020, 20 (22) : 1 - 26
  • [5] Application of New Hyperspectral Sensors in the Remote Sensing of Aquatic Ecosystem Health: Exploiting PRISMA and DESIS for Four Italian Lakes
    Bresciani, Mariano
    Giardino, Claudia
    Fabbretto, Alice
    Pellegrino, Andrea
    Mangano, Salvatore
    Free, Gary
    Pinardi, Monica
    [J]. RESOURCES-BASEL, 2022, 11 (02):
  • [6] THE PRISMA MISSION
    Candela, L.
    Formaro, R.
    Guarini, R.
    Loizzo, R.
    Longo, F.
    Varacalli, G.
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 253 - 256
  • [7] DATA PROCESSING FOR THE SPACE-BASED DESIS HYPERSPECTRAL SENSOR
    Carmona, E.
    Avbelj, J.
    Alonso, K.
    Bachmann, M.
    Cerra, D.
    Eckardt, A.
    Gerasch, B.
    Graham, L.
    Guenther, B.
    Heiden, U.
    Kerr, G.
    Knodt, U.
    Krutz, D.
    Krawcyk, H.
    Makarau, A.
    Miller, R.
    Mueller, R.
    Perkins, R.
    Walter, I.
    [J]. ISPRS HANNOVER WORKSHOP: HRIGI 17 - CMRT 17 - ISA 17 - EUROCOW 17, 2017, 42-1 (W1): : 271 - 277
  • [8] Davies D., 2020, NASA TECHNICAL REPOR
  • [9] The use of NOAA/AVHRR satellite data for monitoring and assessment of forest fires and floods
    Domenikiotis, C.
    Loukas, A.
    Dalezios, N. R.
    [J]. NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2003, 3 (1-2) : 115 - 128
  • [10] Griffin MK, 2000, INT GEOSCI REMOTE SE, P809, DOI 10.1109/IGARSS.2000.861711