A bijective proof of the ASM theorem Part I: the operator formula

被引:9
作者
Fischer, Ilse [1 ]
Konvalinka, Matjaz [2 ,3 ]
机构
[1] Univ Vienna, Fak Math, Vienna, Austria
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[3] Inst Math Phys & Mech, Ljubljana, Slovenia
关键词
ALTERNATING SIGN MATRICES; PLANE PARTITIONS; ENUMERATION;
D O I
10.37236/9082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Alternating sign matrices are known to be equinumerous with descending plane partitions, totally symmetric self-complementary plane partitions and alternating sign triangles, but no bijective proof for any of these equivalences has been found so far. In this paper we provide the first bijective proof of the operator formula for monotone triangles, which has been the main tool for several non-combinatorial proofs of such equivalences. In this proof, signed sets and sijections (signed bijections) play a fundamental role.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 41 条
[1]   PLANE PARTITIONS .5. THE TSSCPP CONJECTURE [J].
ANDREWS, GE .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1994, 66 (01) :28-39
[2]   PLANE PARTITIONS(III) - WEAK MACDONALD CONJECTURE [J].
ANDREWS, GE .
INVENTIONES MATHEMATICAE, 1979, 53 (03) :193-225
[3]  
Andrews George E., 1986, CBMS REGIONAL C SERI, V66
[4]  
[Anonymous], 1999, PROOFS C STORY ALTER
[5]  
[Anonymous], 1999, ENUMERATIVE COMBINAT, DOI [DOI 10.1017/CBO9780511609589, 10.1017/CBO9780511609589]
[6]  
[Anonymous], 1996, Internat. Math. Res. Notices, DOI DOI 10.1155/S1073792896000128
[7]   Extreme diagonally and antidiagonally symmetric alternating sign matrices of odd order [J].
Ayyer, Arvind ;
Behrend, Roger E. ;
Fischer, Ilse .
ADVANCES IN MATHEMATICS, 2020, 367
[8]   Diagonally and antidiagonally symmetric alternating sign matrices of odd order [J].
Behrend, Roger E. ;
Fischer, Ilse ;
Konvalinka, Matjaz .
ADVANCES IN MATHEMATICS, 2017, 315 :324-365
[9]   A doubly-refined enumeration of alternating sign matrices and descending plane partitions [J].
Behrend, Roger E. ;
Di Francesco, Philippe ;
Zinn-Justin, Paul .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (02) :409-432
[10]   On the weighted enumeration of alternating sign matrices and descending plane partitions [J].
Behrend, Roger E. ;
Di Francesco, Philippe ;
Zinn-Justin, Paul .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2012, 119 (02) :331-363