Convergence in asymptotically autonomous functional differential equations

被引:14
作者
Arino, O
Pituk, M
机构
[1] Univ Pau & Pays Adour, Dept Math Rech, F-64000 Pau, France
[2] Univ Veszprem, Dept Math & Comp, H-8201 Veszprem, Hungary
基金
匈牙利科学研究基金会;
关键词
functional differential equation; asymptotic constancy; asymptotic equilibrium; uniform stability; perturbed equation;
D O I
10.1006/jmaa.1999.6489
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider linear and nonlinear perturbations of a linear autonomous functional differential equation which has infinitely many equilibria. We give sufficient conditions under which the solutions of the perturbed equation tend to the equilibria of the unperturbed equation at infinity. As a consequence, we obtain sufficient conditions for systems of delay differential equations to have asymptotic equilibrium. (C) 1999 Academic Press.
引用
收藏
页码:376 / 392
页数:17
相关论文
共 10 条
[1]  
ARINO O, 1987, C MATH SOC J BOLYAI, V47, P37
[2]   CRITERIA FOR ASYMPTOTIC CONSTANCY OF SOLUTIONS OF FUNCTIONAL-DIFFERENTIAL EQUATIONS [J].
ATKINSON, FV ;
HADDOCK, JR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1983, 91 (02) :410-423
[3]  
DIBLIK J, 1997, P 2 INT C DIFF EQ AM, P137
[4]   L(2)-PERTURBATION OF A LINEAR DELAY-DIFFERENTIAL EQUATION [J].
GYORI, I ;
PITUK, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 195 (02) :415-427
[5]  
GYORI I., 1996, DYNAMIC SYSTEMS APPL, V5, P277
[6]  
Hale J. K., 1993, INTRO FUNCTIONAL DIF, DOI 10.1007/978-1-4612-4342-7
[7]  
HALE JK, 1977, THEORY FUNCTIONAL DI
[8]  
Philos Ch. G., 1983, FUNKCIAL EKVAC, V26, P281
[9]  
Zaanen A. C., 1967, Integration
[10]  
[No title captured]