Schwarz symmetrization and comparison results for nonlinear elliptic equations and eigenvalue problems

被引:3
作者
Bonorino, Leonardo Prange [1 ]
Bezerra Montenegro, Jose Fabio [2 ]
机构
[1] Univ Fed Rio Grande do Sul, Dept Matemat Pura & Aplicada, BR-91509900 Porto Alegre, RS, Brazil
[2] Univ Fed Ceara, Dept Matemat, BR-60455760 Fortaleza, Ceara, Brazil
关键词
Schwarz symmetrization; Distribution function; Nonlinear elliptic problem; Eigenvalue problem; Optimal estimates; Degenerate elliptic equation; CONSTANT IMPROVEMENT; COMPARISON-THEOREMS; DEGENERATE; EIGENFUNCTIONS; REARRANGEMENTS; UNIQUENESS;
D O I
10.1007/s10231-012-0255-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We compare the distribution function and the maximum of solutions of nonlinear elliptic equations defined in general domains with solutions of similar problems defined in a ball using Schwarz symmetrization. As an application, we prove the existence and bound of solutions for some nonlinear equation. Moreover, for some nonlinear problems, we show that if the first p-eigenvalue of a domain is big, the supremum of a solution related to this domain is close to zero. For that we obtain L-infinity estimates for solutions of nonlinear and eigenvalue problems in terms of other L (p) norms.
引用
收藏
页码:987 / 1024
页数:38
相关论文
共 50 条
[11]  
[Anonymous], STUDIES MATH ANAL
[12]  
[Anonymous], 1989, GRAD TEXTS MATH
[13]  
[Anonymous], 1971, Queen's Papers in Pure and Applied Mathematics
[14]  
[Anonymous], 1985, Ann. Fac. Sci. Toulouse Math
[15]  
[Anonymous], 1981, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser.
[16]  
[Anonymous], 1979, B UNIONE MAT ITAL
[17]   SYMMETRIZATIONS IN PARABOLIC EQUATIONS [J].
BANDLE, C .
JOURNAL D ANALYSE MATHEMATIQUE, 1976, 30 :98-112
[18]  
Bandle C., 1980, MONOGR STUD MATH, V7
[19]   A direct uniqueness proof for equations involving the p-Laplace operator [J].
Belloni, M ;
Kawohl, B .
MANUSCRIPTA MATHEMATICA, 2002, 109 (02) :229-231
[20]   COMPARISON AND REGULARITY RESULTS FOR A NONLINEAR ELLIPTIC EQUATION [J].
BETTA, MF ;
MERCALDO, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (01) :63-77