On-the-Fly Active Learning of Interatomic Potentials for Large-Scale Atomistic Simulations

被引:127
作者
Jinnouchi, Ryosuke [1 ]
Miwa, Kazutoshi [1 ]
Karsai, Ferenc [2 ]
Kresse, Georg [3 ]
Asahi, Ryoji [1 ]
机构
[1] Toyota Cent Res & Dev Labs Inc, Nagakute, Aichi 4801192, Japan
[2] VASP Software GmbH, A-1090 Vienna, Austria
[3] Univ Vienna, Fac Phys, Computat Mat Phys, A-1090 Vienna, Austria
关键词
FORCE-FIELD; MOLECULAR-DYNAMICS; PHASE-TRANSITIONS; ENERGY; IDENTIFICATION; MECHANICS; DISCOVERY; NETWORKS; SURFACES; HYDROGEN;
D O I
10.1021/acs.jpclett.0c01061
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The on-the-fly generation of machine-learning force fields by active-learning schemes attracts a great deal of attention in the community of atomistic simulations. The algorithms allow the machine to self-learn an interatomic potential and construct machine-learned models on the fly during simulations. State-of-the-art query strategies allow the machine to judge whether new structures are out of the training data set or not. Only when the machine judges the necessity of updating the data set with the new structures are first-principles calculations carried out. Otherwise, the yet available machine-learned model is used to update the atomic positions. In this manner, most of the first-principles calculations are bypassed during training, and overall, simulations are accelerated by several orders of magnitude while retaining almost first-principles accuracy. In this Perspective, after describing essential components of the active-learning algorithms, we demonstrate the power of the schemes by presenting recent applications.
引用
收藏
页码:6946 / 6955
页数:10
相关论文
共 97 条
  • [1] High-dimensional neural network potentials for metal surfaces: A prototype study for copper
    Artrith, Nongnuch
    Behler, Joerg
    [J]. PHYSICAL REVIEW B, 2012, 85 (04)
  • [2] Machine Learning a General-Purpose Interatomic Potential for Silicon
    Bartok, Albert P.
    Kermode, James
    Bernstein, Noam
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW X, 2018, 8 (04):
  • [3] Machine learning unifies the modeling of materials and molecules
    Bartok, Albert P.
    De, Sandip
    Poelking, Carl
    Bernstein, Noam
    Kermode, James R.
    Csanyi, Gabor
    Ceriotti, Michele
    [J]. SCIENCE ADVANCES, 2017, 3 (12):
  • [4] On representing chemical environments
    Bartok, Albert P.
    Kondor, Risi
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW B, 2013, 87 (18)
  • [5] Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
    Bartok, Albert P.
    Payne, Mike C.
    Kondor, Risi
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (13)
  • [6] Generalized neural-network representation of high-dimensional potential-energy surfaces
    Behler, Joerg
    Parrinello, Michele
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (14)
  • [7] Behrens M, 2012, SCIENCE, V336, P893, DOI [10.1126/science.1219831, 10.1126/science.12198331]
  • [8] De novo exploration and self-guided learning of potential-energy surfaces
    Bernstein, Noam
    Csanyi, Gabor
    Deringer, Volker L.
    [J]. NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)
  • [9] Bishop C.M., 2007, Technometrics, Vfirst
  • [10] The Bronsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis
    Bligaard, T
    Norskov, JK
    Dahl, S
    Matthiesen, J
    Christensen, CH
    Sehested, J
    [J]. JOURNAL OF CATALYSIS, 2004, 224 (01) : 206 - 217