Convergence of a new parallel algorithm for the Navier-Stokes equations

被引:7
作者
Feng, Xinlong [1 ,2 ]
He, Yinnian [1 ]
机构
[1] Xi An Jiao Tong Univ, Fac Sci, Xian 710049, Shanxi, Peoples R China
[2] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
关键词
Navier-Stokes equations; parallel algorithm; fractional step methods; error estimation; FINITE-ELEMENT APPROXIMATION; INCOMPRESSIBLE VISCOUS-FLOW; FRACTIONAL-STEP SCHEMES; PROJECTION METHODS; DISCRETIZATION;
D O I
10.1016/j.nonrwa.2007.08.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the convergence and stability of a new parallel algorithm and the error estimates for a particular case of the new parallel algorithm, which is used to solve the incompressible nonstationary Navier-Stokes equations. The theoretical results show that the scheme is (at least) conditionally stable and convergent. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:23 / 41
页数:19
相关论文
共 50 条
  • [11] The influence of grid orthogonality on the convergence of the SIMPLE algorithm for solving Navier-Stokes equations
    Dzijan, Ivo
    Virag, Zdravko
    Kozmar, Hrvoje
    [J]. STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2007, 53 (02): : 105 - 113
  • [12] A parallel two-level finite element method for the Navier-Stokes equations
    Shang, Yue-qiang
    Luo, Zhen-dong
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2010, 31 (11) : 1429 - 1438
  • [13] Convergence of approximating solutions of the Navier-Stokes equations in Rn
    Koizumi, Yuta
    Taniguchi, Toya
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 525 (02)
  • [14] Newton Iterative Parallel Finite Element Algorithm for the Steady Navier-Stokes Equations
    Yinnian He
    Liquan Mei
    Yueqiang Shang
    Juan Cui
    [J]. Journal of Scientific Computing, 2010, 44 : 92 - 106
  • [15] Newton Iterative Parallel Finite Element Algorithm for the Steady Navier-Stokes Equations
    He, Yinnian
    Mei, Liquan
    Shang, Yueqiang
    Cui, Juan
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2010, 44 (01) : 92 - 106
  • [16] PARALLEL CUDA IMPLEMENTATION OF THE ALGORITHM FOR SOLVING THE NAVIER-STOKES EQUATIONS USING THE FICTITIOUS DOMAIN METHOD
    Temirbekov, A. N.
    Malgazhdarov, Ye A.
    Kassenov, S. Ye
    Urmashev, B. A.
    [J]. JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2021, 109 (01): : 63 - 75
  • [17] Parallel processing for implicit solutions of the Navier-Stokes equations
    [J]. Abdallah, S., 1600, AIAA, Washington, DC, United States (32):
  • [18] New Unconditionally Stable Schemes for the Navier-Stokes Equations
    Yao, Hui
    Azaiez, Mejdi
    Xu, Chuanju
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2021, 30 (04) : 1083 - 1117
  • [19] On the geometric convergence of the Arrow-Hurwicz algorithm for steady incompressible Navier-Stokes equations
    Chen, Puyin
    Huang, Jianguo
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 18 (04) : 628 - 635
  • [20] Parallel preconditioners for the unsteady Navier-Stokes equations and applications to hemodynamics simulations
    Deparis, Simone
    Grandperrin, Gwenol
    Quarteroni, Alfio
    [J]. COMPUTERS & FLUIDS, 2014, 92 : 253 - 273