Convergence of a new parallel algorithm for the Navier-Stokes equations

被引:7
作者
Feng, Xinlong [1 ,2 ]
He, Yinnian [1 ]
机构
[1] Xi An Jiao Tong Univ, Fac Sci, Xian 710049, Shanxi, Peoples R China
[2] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
关键词
Navier-Stokes equations; parallel algorithm; fractional step methods; error estimation; FINITE-ELEMENT APPROXIMATION; INCOMPRESSIBLE VISCOUS-FLOW; FRACTIONAL-STEP SCHEMES; PROJECTION METHODS; DISCRETIZATION;
D O I
10.1016/j.nonrwa.2007.08.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the convergence and stability of a new parallel algorithm and the error estimates for a particular case of the new parallel algorithm, which is used to solve the incompressible nonstationary Navier-Stokes equations. The theoretical results show that the scheme is (at least) conditionally stable and convergent. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:23 / 41
页数:19
相关论文
共 27 条
[1]  
Albarreal I, 2002, NUMER MATH, V93, P201, DOI [10.1007/s002110100383, 10.1007/s00211010383]
[2]  
[Anonymous], 1984, Numerical Methods for Nonlinear Variational Problems
[3]   Error estimates for an operator-splitting method for incompressible flows [J].
Blasco, J ;
Codina, R .
APPLIED NUMERICAL MATHEMATICS, 2004, 51 (01) :1-17
[4]  
Blasco J, 1998, INT J NUMER METH FL, V28, P1391, DOI 10.1002/(SICI)1097-0363(19981230)28:10<1391::AID-FLD699>3.0.CO
[5]  
2-5
[6]  
Ciarlet P., 1979, The finite element method for elliptic problems
[7]   On some pressure segregation methods of fractional-step type for the finite element approximation of incompressible flow problems [J].
Codina, R ;
Badia, S .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (23-24) :2900-2918
[8]  
CRUZ JL, 1998, COMPUT MATH APPL, V35, P71
[9]   THE CONVERGENCE OF 2 NUMERICAL SCHEMES FOR THE NAVIER-STOKES EQUATIONS [J].
FERNANDEZCARA, E ;
BELTRAN, MM .
NUMERISCHE MATHEMATIK, 1989, 55 (01) :33-60
[10]   Algebraic fractional-step schemes for time-dependent incompressible Navier-Stokes equations [J].
Gervasio, P ;
Saleri, F .
JOURNAL OF SCIENTIFIC COMPUTING, 2006, 27 (1-3) :257-269