On (1-u)-cyclic codes over Fpk + uFpk

被引:70
作者
Amarra, Maria Carmen V. [1 ]
Nemenzo, Fidel R. [1 ]
机构
[1] Univ Philippines, Inst Math, Quezon City 1101, Philippines
关键词
Cyclic and quasicyclic codes; Gray map; Finite rings;
D O I
10.1016/j.aml.2007.07.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the results of [J.F. Qian, L.N. Zhang, S.X. Zhu, (1 + u)-constacyclic and cyclic codes over F-2 + uF(2), Appl. Math. Lett. 19 (2006) 820-823. [3]] to codes over the commutative ring R = F-p(k) + uF(p)(k), where p is prime, k epsilon N and u(2) = 0. In particular, we prove that the Gray image of a linear (t - u)-cyclic code over R of length n is a distance-invariant quasicyclic code of index p(k-1) and length p(k)n over F-p(k). We also prove that if (n, p) = 1, then every code of length p(k)n over F-p(k) which is the Gray image of a linear cyclic code of length n over R is permutation-equivalent to a quasicyclic code of index p(k-1).
引用
收藏
页码:1129 / 1133
页数:5
相关论文
共 4 条
[1]   Gray isometries for finite chain rings and a nonlinear ternary (36,312,15) code [J].
Greferath, M ;
Schmidt, SE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (07) :2522-2524
[2]   Zpk+1-linear codes [J].
Ling, S ;
Blackford, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (09) :2592-2605
[3]   (1+u) constacyclic and cyclic codes over F2+u F2 [J].
Qian, Jian-Fa ;
Zhang, Li-Na ;
Zhu, Shi-Xin .
APPLIED MATHEMATICS LETTERS, 2006, 19 (08) :820-823
[4]   Negacyclic and cyclic codes over Z4 [J].
Wolfmann, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (07) :2527-2532