Harnack inequality and derivative formula for SDE driven by fractional Brownian motion

被引:17
作者
Fan XiLiang [1 ,2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Anhui Normal Univ, Dept Math, Wuhu 241003, Peoples R China
基金
中国国家自然科学基金;
关键词
Harnack inequality; stochastic differential equation; fractional Brownian motion; LOGARITHMIC SOBOLEV INEQUALITIES; DIFFERENTIAL-EQUATIONS; FUNCTIONAL INEQUALITIES; STOCHASTIC CALCULUS; TIME ASYMPTOTICS; RESPECT;
D O I
10.1007/s11425-013-4569-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, Harnack inequality and derivative formula are established for stochastic differential equation driven by fractional Brownian motion with Hurst parameter H < 1/2. As applications, strong Feller property, log-Harnack inequality and entropy-cost inequality are given.
引用
收藏
页码:515 / 524
页数:10
相关论文
共 25 条
  • [1] On the small time asymptotics of diffusion processes on path groups
    Aida, S
    Zhang, T
    [J]. POTENTIAL ANALYSIS, 2002, 16 (01) : 67 - 78
  • [2] Aida S, 2001, PROG PROBAB, V48, P77
  • [3] Stochastic calculus with respect to Gaussian processes
    Alòs, E
    Mazet, O
    Nualart, D
    [J]. ANNALS OF PROBABILITY, 2001, 29 (02) : 766 - 801
  • [4] [Anonymous], 1988, Special functions of mathematical physics
  • [5] Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below
    Arnaudon, M
    Thalmaier, A
    Wang, FY
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2006, 130 (03): : 223 - 233
  • [6] Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds
    Arnaudon, Marc
    Thalmaier, Anton
    Wang, Feng-Yu
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (10) : 3653 - 3670
  • [7] Hypercontractivity of Hamilton-Jacobi equations
    Bobkov, SG
    Gentil, I
    Ledoux, M
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (07): : 669 - 696
  • [8] Stochastic analysis, rough path analysis and fractional Brownian motions
    Coutin, L
    Qian, ZM
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2002, 122 (01) : 108 - 140
  • [9] Stochastic analysis of the fractional Brownian motion
    Decreusefond, L
    Üstünel, AS
    [J]. POTENTIAL ANALYSIS, 1999, 10 (02) : 177 - 214
  • [10] HARNACK INEQUALITY FOR FUNCTIONAL SDEs WITH BOUNDED MEMORY
    Es-Sarhir, Abdelhadi
    Von Renesse, Max-K.
    Scheutzow, Michael
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2009, 14 : 560 - 565