Exploring the possible interaction between anti-epilepsy drugs and multidrug efflux pumps; in vitro observations

被引:34
作者
Rivers, Francesca [1 ]
O'Brien, Terence J. [2 ]
Callaghan, Richard [1 ]
机构
[1] Univ Oxford, John Radcliffe Hosp, Nuffield Dept Clin Lab Sci, Oxford OX3 9DU, England
[2] Univ Melbourne, Royal Melbourne Hosp, Dept Med RMH WH, Parkville, Vic 3050, Australia
关键词
Epilepsy; Anti-epileptic drugs; Drug resistance; ABC transporter; Multidrug efflux; ABC(B1); ABC(C1); ABC(G2);
D O I
10.1016/j.ejphar.2008.09.014
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Approximately one-third of patients with epilepsy display an inherent resistance to pharmacological therapy, manifest as continuing seizures despite maximal tolerated doses of anti-epileptic drugs. One hypothesis for the underlying mechanism of anti-epileptic drug pharmacoresistance is lower drug entry to the epileptic neurones due to the activity of multidrug efflux pumps from the ATP Binding Cassette (ABC) superfamily at the blood-brain barrier. There has been a steady accumulation of animal and human data supporting this theory, particularly for ABC(B1) (P-glycoprotein). However, much of this evidence is indirect. In the present study, several anti-epileptic drugs (carbamazepine, valproic acid, phenytoin, lamotrigine and primidone) were examined for their ability to interact with three ABC transporters that have been implicated pharmacoresistance of anti-epileptic drugs - ABC(B1), ABC(C1) and ABC(G2). Interaction of anti-epileptic drugs with the transporters was assessed by determining whether they could reverse the ability of multidrug ABC transporters to confer a drug resistance phenotype on cancer cell lines. None of these compounds was able to affect the phenotype, suggesting an absence of any interaction with the multidrug transporters. This finding was further investigated by examination of transporter activity; namely the ability to reduce steady-state intracellular [H-3]-radiolabelled drug accumulation. None of the anti-epileptic drugs affected labelled drug accumulation by any of the triumvirate of multidrug transporters examined, indicating that they are unlikely to be substrates. The lack of direct modulation by anti-epileptic drugs of ABC transporter function suggests that these proteins do not contribute significantly to resistance in epilepsy. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 45 条
[1]   Expression and cellular distribution of multidrug resistance-related proteins in the hippocampus of patients with mesial temporal lobe epilepsy [J].
Aronica, E ;
Gorter, JA ;
Ramkema, M ;
Redeker, S ;
Özbas-Gerçeker, F ;
van Vliet, EA ;
Scheffer, GL ;
Scheper, RJ ;
van der Valk, P ;
Baayen, JC ;
Troost, D .
EPILEPSIA, 2004, 45 (05) :441-451
[2]   Differences in the transport of the antiepileptic drugs phenytoin, levetiracetarn and carbamazepine by human and mouse P-glycoprotein [J].
Baltes, Steffen ;
Gastens, Alexandra M. ;
Fedrowitz, Maren ;
Potschka, Heidrun ;
Kaever, Volkhard ;
Loescher, Wolfgang .
NEUROPHARMACOLOGY, 2007, 52 (02) :333-346
[3]   Valproic acid is not a substrate for P-glycoprotein or multidrug resistance proteins 1 and 2 in a number of in vitro and in vivo transport assays [J].
Baltes, Steffen ;
Fedrowitz, Maren ;
Tortos, Carlos Luna ;
Potschka, Heidrun ;
Loescher, Wolfgang .
JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2007, 320 (01) :331-343
[4]   The multidrug transporter hypothesis of drug resistance in epilepsy:: Proof-of-principle in a rat model of temporal lobe epilepsy [J].
Brandt, Claudia ;
Bethmann, Kerstin ;
Gastens, Alexandra M. ;
Loescher, Wolfgang .
NEUROBIOLOGY OF DISEASE, 2006, 24 (01) :202-211
[5]   Multiple drugbinding sites on the R482G isoform of the ABCG2 transporter [J].
Clark, R. ;
Kerr, I. D. ;
Callaghan, R. .
BRITISH JOURNAL OF PHARMACOLOGY, 2006, 149 (05) :506-515
[6]   Quantitative in vivo microdialysis study on the influence of multidrug transporters on the blood-brain barrier passage of oxcarbazepine: Concomitant use of hippocampal monoamines as pharmacodynamic markers for the anticonvulsant activity [J].
Clinckers, R ;
Smolders, I ;
Meurs, A ;
Ebinger, G ;
Michotte, Y .
JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2005, 314 (02) :725-731
[7]   MULTIDRUG-RESISTANCE GENE (P-GLYCOPROTEIN) IS EXPRESSED BY ENDOTHELIAL-CELLS AT BLOOD-BRAIN BARRIER SITES [J].
CORDONCARDO, C ;
OBRIEN, JP ;
CASALS, D ;
RITTMANGRAUER, L ;
BIEDLER, JL ;
MELAMED, MR ;
BERTINO, JR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (02) :695-698
[8]   A multidrug resistance transporter from human MCF-7 breast cancer cells [J].
Doyle, LA ;
Yang, WD ;
Abruzzo, LV ;
Krogmann, T ;
Gao, YM ;
Rishi, AK ;
Ross, DD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (26) :15665-15670
[9]   ALLOSTERIC REGULATION OF [H-3] VINBLASTINE BINDING TO P-GLYCOPROTEIN OF MCF-7 ADR CELLS BY DEXNIGULDIPINE [J].
FERRY, DR ;
MALKHANDI, PJ ;
RUSSELL, MA ;
KERR, DJ .
BIOCHEMICAL PHARMACOLOGY, 1995, 49 (12) :1851-1861
[10]   DETECTION OF P-GLYCOPROTEIN ISOFORMS BY GENE-SPECIFIC MONOCLONAL-ANTIBODIES [J].
GEORGES, E ;
BRADLEY, G ;
GARIEPY, J ;
LING, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (01) :152-156