Improved electrochemical performance of LiMO2 (M=Mn, Ni, Co)-Li2MnO3 cathode materials in ionic liquid-based electrolyte

被引:40
作者
Li, Jie
Jeong, Sangsik
Kloepsch, Richard
Winter, Martin
Passerini, Stefano [1 ]
机构
[1] Univ Munster, Inst Phys Chem, D-48149 Munster, Germany
关键词
Ionic liquid; Electrolyte; LiMO2-Li2MnO3; cathode; Lithium batteries; RECHARGEABLE BATTERIES; POLYMER ELECTROLYTES; LITHIUM;
D O I
10.1016/j.jpowsour.2013.04.015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in N-butyl-N-methylpyrrolidinium bis(fluorosulfonyl) imide (PYR14FSI) (1:9 in molar ratio) is successfully tested as electrolyte for the high voltage LiMO2-Li-2-MnO3 (cathode)/lithium (anode) cells at elevated temperature (40 degrees C). Compared to conventional electrolytes, such as 1 M LiPF6 solution in the mixed solvent of ethylene and dimethyl carbonate (EC:DMC = 1:1), the use of PYR14FSI-LiTFSI electrolyte results in a net improvement of LiMO2-Li2MnO3 cycling stability while granting comparable initial capacity. In addition, the ionic conductivity of the ionic liquid-based electrolyte at 40 degrees C is high enough to sustain the excellent rate capability of this cathode material. Li/LiMO2-Li2MnO3 cells delivered initial capacity exceeding 200 mA h g(-1) at high current rate (2 C) while retaining 94% of the initial capacity after 100 cycles. Differential capacity versus potential analysis and postmortem characterization by scanning electron microscope, X-ray diffraction and were carried out to explain the improved performance of LiMO2-Li2MnO3 in the IL-based electrolyte. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:490 / 495
页数:6
相关论文
共 26 条
[1]   Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries [J].
Appetecchi, G. B. ;
Kim, G. -T. ;
Montanina, M. ;
Carewska, M. ;
Marcilla, R. ;
Mecerreyes, D. ;
De Meatza, I. .
JOURNAL OF POWER SOURCES, 2010, 195 (11) :3668-3675
[2]   Synthesis of hydrophobic ionic liquids for electrochemical applications [J].
Appetecchi, Giovanni B. ;
Scaccia, Silvera ;
Tizzani, Cosimo ;
Alessandrini, Fabrizio ;
Passerini, S. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (09) :A1685-A1691
[3]   Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2 [J].
Armstrong, A. Robert ;
Holzapfel, Michael ;
Novak, Petr ;
Johnson, Christopher S. ;
Kang, Sun-Ho ;
Thackeray, Michael M. ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (26) :8694-8698
[4]   Overcharging manganese oxides:: Extracting lithium beyond Mn4+ [J].
Armstrong, AR ;
Robertson, AD ;
Bruce, PG .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :275-280
[5]   Rechargeable batteries: challenges old and new [J].
Goodenough, John B. .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (06) :2019-2029
[6]   Synthesis and electrochemical properties of nanocrystalline Li[NixLi(1-2x)/3Mn(2-x)/3]O2 prepared by a simple combustion method [J].
Hong, YS ;
Park, YJ ;
Ryu, KS ;
Chang, SH ;
Kim, MG .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (09) :1424-1429
[7]  
Jeom-Soo K, 2004, CHEM MAT, V16
[8]   Synthesis, Characterization and Electrochemistry of Lithium Battery Electrodes: xLi2MnO3•(1-x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7) [J].
Johnson, Christopher S. ;
Li, Naichao ;
Lefief, Christina ;
Vaughey, John T. ;
Thackeray, Michael M. .
CHEMISTRY OF MATERIALS, 2008, 20 (19) :6095-6106
[9]   The significance of the Li2MnO3 component in 'composite' xLi2MnO3 • (1-x)LiMn0.5Ni0.5O2 electrodes [J].
Johnson, CS ;
Kim, JS ;
Lefief, C ;
Li, N ;
Vaughey, JT ;
Thackeray, MM .
ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (10) :1085-1091
[10]   New Insights to Self-Aggregation in Ionic Liquid Electrolytes for High-Energy Electrochemical Devices [J].
Kunze, Miriam ;
Jeong, Sangsik ;
Paillard, Elie ;
Schoenhoff, Monika ;
Winter, Martin ;
Passerini, Stefano .
ADVANCED ENERGY MATERIALS, 2011, 1 (02) :274-281