Experimental investigations of the anode flow field of a micro direct methanol fuel cell

被引:69
作者
Wong, CW [1 ]
Zhao, TS [1 ]
Ye, Q [1 ]
Liu, JG [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China
关键词
polymer electrolyte fuel cell; DMFC; micro channel; micro fuel cell;
D O I
10.1016/j.jpowsour.2005.04.028
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effect of the anode flow field design on the performance of an in-house fabricated micro direct methanol fuel cell (mu DMFC) with an active area 1.0 cm x 1.0 cm was investigated experimentally. Single serpentine and parallel flow fields consisting of micro channels were tested. The experimental results indicated that the serpentine flow field exhibited significantly higher cell voltages than did the parallel flow field, particularly at high current densities. The study of the effect of channel depth of the serpentine flow field suggested that there exists an optimal channel depth for the same channel width and the same open ratio when the same methanol flow rate is supplied; either shallower or deeper channels will lead to a reduction in the cell performance. Finally, it was demonstrated that performance of the mu DMFC with the reactants fed by an active means was insensitive to the cell orientations, which is different from conventional DMFCs with larger flow channels reported in the literature. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:291 / 296
页数:6
相关论文
共 27 条
[1]   The effect of anode flow characteristics and temperature on the performance of a direct methanol fuel cell [J].
Amphlett, JC ;
Peppley, BA ;
Halliop, E ;
Sadiq, A .
JOURNAL OF POWER SOURCES, 2001, 96 (01) :204-213
[2]   Influence of flow field design on the performance of a direct methanol fuel cell [J].
Aricò, AS ;
Cretì, P ;
Baglio, V ;
Modica, E ;
Antonucci, V .
JOURNAL OF POWER SOURCES, 2000, 91 (02) :202-209
[3]   Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution [J].
Bewer, T ;
Beckmann, T ;
Dohle, H ;
Mergel, J ;
Stolten, D .
JOURNAL OF POWER SOURCES, 2004, 125 (01) :1-9
[4]   Water-neutral micro direct-methanol fuel cell (DMFC) for portable applications [J].
Blum, A ;
Duvdevani, T ;
Philosoph, M ;
Rudoy, N ;
Peled, E .
JOURNAL OF POWER SOURCES, 2003, 117 (1-2) :22-25
[5]   Alternative supports for the preparation of catalysts for low-temperature fuel cells: the use of carbon nanotubes [J].
Carmo, M ;
Paganin, VA ;
Rosolen, JM ;
Gonzalez, ER .
JOURNAL OF POWER SOURCES, 2005, 142 (1-2) :169-176
[6]   Methanol electro-oxidation and direct methanol fuel cell using Pt/Rh and Pt/Ru/Rh alloy catalysts [J].
Choi, JH ;
Park, KW ;
Park, IS ;
Nam, WH ;
Sung, YE .
ELECTROCHIMICA ACTA, 2004, 50 (2-3) :787-790
[7]   Fuel cells for portable applications [J].
Dyer, CK .
JOURNAL OF POWER SOURCES, 2002, 106 (1-2) :31-34
[8]   Proton conductive thin films prepared by plasma polymerization [J].
Finsterwalder, F ;
Hambitzer, G .
JOURNAL OF MEMBRANE SCIENCE, 2001, 185 (01) :105-124
[9]   Structural and electrochemical characterization of binary, ternary, and quaternary platinum alloy catalysts for methanol electro-oxidation [J].
Gurau, B ;
Viswanathan, R ;
Liu, RX ;
Lafrenz, TJ ;
Ley, KL ;
Smotkin, ES ;
Reddington, E ;
Sapienza, A ;
Chan, BC ;
Mallouk, TE ;
Sarangapani, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (49) :9997-10003
[10]   Modification of Nafion proton exchange membranes to reduce methanol crossover in PEM fuel cells [J].
Jia, NY ;
Lefebvre, MC ;
Halfyard, J ;
Qi, ZG ;
Pickup, PG .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2000, 3 (12) :529-531