Challenges, progress and promises of metabolite annotation for LC-MS-based metabolomics

被引:259
作者
Chaleckis, Romanas [1 ,2 ]
Meister, Isabel [1 ,2 ]
Zhang, Pei [1 ,2 ]
Wheelock, Craig E. [1 ,2 ]
机构
[1] Gunma Univ, Initiat Adv Res GIAR, Gunma, Japan
[2] Karolinska Inst, Dept Med Biochem & Biophys, Div Physiol Chem 2, Stockholm, Sweden
基金
日本学术振兴会; 瑞典研究理事会;
关键词
IDENTIFICATION; DATABASES; BLOOD; PERFORMANCE; POPULATION; EXTRACTION; HMDB; TIME;
D O I
10.1016/j.copbio.2018.07.010
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Accurate annotation is vital for data interpretation; however, metabolite identification is a major bottleneck in untargeted metabolomics. Although community guidelines for metabolite identification were published over a decade ago, adaptation of the recommended standards has been limited. The complexity of LC-MS data due to combinations of various chromatographic and mass spectrometric acquisition methods has resulted in the advent of diverse workflows, which often involve non-standardized manual curation. Herein, we review the parameters involved in metabolite reporting and provide a workflow to estimate the level of confidence in reported metabolite annotation. The future of metabolite identification will be heavily based upon the use of metabolome data repositories and associated data analysis tools, which will enable data to be shared, re-analyzed and re-annotated in an automated fashion.
引用
收藏
页码:44 / 50
页数:7
相关论文
共 54 条
[1]   Biologically Consistent Annotation of Metabolomics Data [J].
Alden, Nicholas ;
Krishnan, Smitha ;
Porokhin, Vladimir ;
Raju, Ravali ;
McElearney, Kyle ;
Gilbert, Alan ;
Lee, Kyongbum .
ANALYTICAL CHEMISTRY, 2017, 89 (24) :13097-13104
[2]   Chemical Similarity Enrichment Analysis (ChemRICH) as alternative to biochemical pathway mapping for metabolomic datasets [J].
Barupal, Dinesh Kumar ;
Fiehn, Oliver .
SCIENTIFIC REPORTS, 2017, 7
[3]   Autonomous Metabolomics for Rapid Metabolite Identification in Global Profiling [J].
Benton, H. Paul ;
Ivanisevic, Julijana ;
Mahieu, Nathaniel G. ;
Kurczy, Michael E. ;
Johnson, Caroline H. ;
Franco, Lauren ;
Rinehart, Duane ;
Valentine, Elizabeth ;
Gowda, Harsha ;
Ubhi, Baljit K. ;
Tautenhahn, Ralf ;
Gieschen, Andrew ;
Fields, Matthew W. ;
Patti, Gary J. ;
Siuzdak, Gary .
ANALYTICAL CHEMISTRY, 2015, 87 (02) :884-891
[4]   Software Tools and Approaches for Compound Identification of LC-MS/MS Data in Metabolomics [J].
Blazenovic, Ivana ;
Kind, Tobias ;
Ji, Jian ;
Fiehn, Oliver .
METABOLITES, 2018, 8 (02)
[5]   Comprehensive comparison of in silico MS/MS fragmentation tools of the CASMI contest: database boosting is needed to achieve 93% accuracy [J].
Blazenovic, Ivana ;
Kind, Tobias ;
Torbasinovic, Hrvoje ;
Obrenovic, Slobodan ;
Mehta, Sajjan S. ;
Tsugawa, Hiroshi ;
Wermuth, Tobias ;
Schauer, Nicolas ;
Jahn, Martina ;
Biedendieck, Rebekka ;
Jahn, Dieter ;
Fiehn, Oliver .
JOURNAL OF CHEMINFORMATICS, 2017, 9
[6]   Searching molecular structure databases using tandem MS data: are we there yet? [J].
Boecker, Sebastian .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2017, 36 :1-6
[7]   The Human Urine Metabolome [J].
Bouatra, Souhaila ;
Aziat, Farid ;
Mandal, Rupasri ;
Guo, An Chi ;
Wilson, Michael R. ;
Knox, Craig ;
Bjorndahl, Trent C. ;
Krishnamurthy, Ramanarayan ;
Saleem, Fozia ;
Liu, Philip ;
Dame, Zerihun T. ;
Poelzer, Jenna ;
Huynh, Jessica ;
Yallou, Faizath S. ;
Psychogios, Nick ;
Dong, Edison ;
Bogumil, Ralf ;
Roehring, Cornelia ;
Wishart, David S. .
PLOS ONE, 2013, 8 (09)
[8]   RAMClust: A Novel Feature Clustering Method Enables Spectral-Matching-Based Annotation for Metabolomics Data [J].
Broeckling, C. D. ;
Afsar, F. A. ;
Neumann, S. ;
Ben-Hur, A. ;
Prenni, J. E. .
ANALYTICAL CHEMISTRY, 2014, 86 (14) :6812-6817
[9]   Toward Merging Untargeted and Targeted Methods in Mass Spectrometry-Based Metabolomics and Lipidomics [J].
Cajka, Tomas ;
Fiehn, Oliver .
ANALYTICAL CHEMISTRY, 2016, 88 (01) :524-545
[10]  
Chaleckis R, 2018, METHODS MOL BIOL, V1730, P45, DOI 10.1007/978-1-4939-7592-1_3