COMBINATORIAL IDENTITIES AND TRIGONOMETRIC INEQUALITIES

被引:4
作者
Alzer, Horst [1 ]
Kwong, Man Kam [2 ]
Pan, Hao [3 ]
机构
[1] Morsbacher Str 10, D-51545 Waldbrol, Germany
[2] Hong Kong Polytech Univ, Dept Appl Math, Hunghom, Hong Kong, Peoples R China
[3] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
关键词
combinatorial identities; Delannoy number; q-analogues; polynomials; Fejer-Jackson inequality;
D O I
10.4064/cm6859-5-2016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is threefold: (i) We offer short and elementary new proofs for (*) Sigma(n)(k=0)2(n-k)(n k) (m k) = Sigma(n)(k=0) (n k) (m+k k) (**) Sigma(n)(k=0) (alpha| k - 1 k) (z+1)l = alpha(alpha | n n) Sigma(n)(k=0) (n k ) z(k)/alpha+k icy k 1)(z + i)k (a+n)Vn (kn) zk The first identity was published by Brereton et al. in 2011 and the second one extends a result provided by the same authors. (ii) We present q -analogues of (*) and (**). (iii) We use (**) to derive identities and inequalities for trigonometric polynomials. Among other results, we show that sin(t) + Sigma(n)(k=2) c(c + 1) ... (c + k - 2) sin(kt)/k! > 0 (c is an element of R) or all n is an element of N and t is an element of (0, pi) if and only if c is an element of [-1,1]. This provides a new extension of the classical Fejer Jackson inequality.
引用
收藏
页码:291 / 305
页数:15
相关论文
共 11 条
[1]  
Andrews G.E., 1998, THEORY PARTITIONS
[2]   Why Delannoy numbers? [J].
Banderier, C ;
Schwer, S .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 135 (01) :40-54
[3]  
Brereton J, 2011, ELECTRON J COMB, V18
[4]  
Jackson D., 1911, REND CIRC MAT PALERM, V32, P257, DOI [10.1007/BF03014798, DOI 10.1007/BF03014798]
[5]  
Kac V. G., 2002, Quantum Calculus, V113
[6]   An extension of Vietoris's inequalities [J].
Koumandos, Stamatis .
RAMANUJAN JOURNAL, 2007, 14 (01) :1-38
[7]   An improved Vietoris sine inequality [J].
Kwong, Man Kam .
JOURNAL OF APPROXIMATION THEORY, 2015, 189 :29-42
[8]  
Milovanovic G. V., 1994, Topics in Polynomials: Extremal Problems, Inequalities, Zeros
[9]  
Sprugnoli R., RIORDAN ARRAY PROOFS
[10]  
TURAN P, 1952, ANN SOC POL MATH, V25, P155