A Menon-type identity with many tuples of group of units in residually finite Dedekind domains

被引:21
作者
Li, Yan [1 ]
Kim, Daeyeoul [2 ]
机构
[1] China Agr Univ, Dept Appl Math, Beijing 100083, Peoples R China
[2] Natl Inst Math Sci, Yuseong Daero 1689 Gil, Daejeon 305811, South Korea
关键词
Menon's identity; Divisor function; Dedekind domain; Residually finite rings;
D O I
10.1016/j.jnt.2016.11.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
B. Sury proved the following Menon-type identity, Sigma gcd(a - 1, b(1), center dot center dot center dot , b(r),n = phi(n)sigma(r)(n), a is an element of U(Z(eta)), b1,center dot center dot center dot ,b(r)is an element of Z(n) where U(Z(n)) is the group of units of the ring for residual classes modulo n, phi is the Euler's totient function and sigma(r)(n) is the sum of r-th powers of positive divisors of n with r being a non-negative integer. Recently, C. Miguel extended this identity from Z to any residually finite Dedekind domain. In this note, we will give a further extension of Miguel's result to the case with many tuples of group of units. For the case of Z, our result reads as follows Sigma gcd(a(1) - 1, center dot center dot center dot , a(s) - 1, b(1), center dot center dot center dot , b(r), n) a(1),center dot center dot center dot ,a(s)is an element of U(z(n)), b1,center dot center dot center dot ,b(r)is an element of z(n) m = phi(n) Pi (phi(p(i)(ki))(s-1) p(ki) (r)(i) - p(ki) ((s+r-1))(i) + sigma(s)+r-1 (P-i(ki))), i=1 where n = p(1)(k1) center dot center dot center dot p(m)(km) is the prime factorization of n. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:42 / 50
页数:9
相关论文
共 18 条
[1]  
Haukkanen P., 1996, PORT MATH, V53, P331
[2]  
Haukkanen P., 1997, Indian J. Math., V39, P37
[3]  
Haukkanen P., 2005, AEQUATIONES MATH, V70, P240, DOI DOI 10.1007/S00010-005-2805-7
[4]  
Menon PKesava, 1965, The Journal of the Indian Mathematical Society, V29, P155
[5]   A Menon-type identity in residually finite Dedekind domains [J].
Miguel, C. .
JOURNAL OF NUMBER THEORY, 2016, 164 :43-51
[6]   Menon's identity in residually finite Dedekind domains [J].
Miguel, C. .
JOURNAL OF NUMBER THEORY, 2014, 137 :179-185
[7]  
Nageswara Rao K., 1972, Lecture Notes Math., V251, P181
[8]  
Narkiewicz Wladysl., 2004, SPRINGER MONOGRAPHS
[9]  
Neukirch J., 1999, Algebraic Number Theory, DOI DOI 10.1007/978-3-662-03983-0
[10]  
RAMAIAH VS, 1978, J REINE ANGEW MATH, V303, P265