Approximation by Jakimovski-Leviatan-beta operators in weighted space

被引:14
作者
Nasiruzzaman, M. [1 ]
Mursaleen, M. [2 ,3 ,4 ]
机构
[1] Univ Tabuk, Fac Sci, Dept Math, POB 4279, Tabuk 71491, Saudi Arabia
[2] China Med Univ Taiwan, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[3] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[4] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
关键词
Appell polynomials; Jakimovski-Leviatan operators; Korovkin's theorem; Modulus of continuity; Lipschitz functions; Peetre's K-functional; 41A10; 41A25; 41A36; CONVERGENCE;
D O I
10.1186/s13662-020-02848-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this article is to introduce a more generalized version of Jakimovski-Leviatan-beta operators through the Appell polynomials. We present some uniform convergence results of these operators via Korovkin's theorem and obtain the rate of convergence by using the modulus of continuity and Lipschitz class. Moreover, we obtain the approximation with the help of Peetre's K-functional and give some direct theorems.
引用
收藏
页数:10
相关论文
共 26 条
[1]   Note On Jakimovski-Leviatan Operators Preserving e-x [J].
Acar, Ecem ;
Izgi, Aydin ;
Serenbay, Sevilay Kirci .
APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2019, 4 (02) :543-550
[2]  
Al-Salam W.A., 1967, Ann. Mat. Pura Appl, V77, P31, DOI [10.1007/BF02416939, DOI 10.1007/BF02416939]
[3]   Approximation of Jakimovski-Leviatan-Beta type integral operators via q-calculus [J].
Alotaibi, Abdullah ;
Mursaleen, M. .
AIMS MATHEMATICS, 2020, 5 (04) :3019-3034
[4]   Approximation by Jakimovski-Leviatan operators of Durrmeyer type involving multiple Appell polynomials [J].
Ansari, Khursheed J. ;
Mursaleen, M. ;
Rahman, Shagufta .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) :1007-1024
[5]  
Appell P., 1880, ANN SCI ECOLE NORM S, V9, P119
[6]   Approximation by a Generalization of the Jakimovski-Leviatan Operators [J].
Ari, Didem Aydin ;
Serenbay, Sevilay Kirci .
FILOMAT, 2019, 33 (08) :2345-2353
[7]   Approximation by Modified Integral Type Jakimovski-Leviatan Operators [J].
Atakut, Cigdem ;
Buyukyazici, Ibrahim .
FILOMAT, 2016, 30 (01) :29-39
[8]  
Bernstein S., 1912, Commun. Soc. Math. Charkow Ser., V13, P1
[9]   Approximation by Chlodowsky type Jakimovski-Leviatan operators [J].
Buyukyazici, Ibrahim ;
Tanberkan, Hande ;
Serenbay, Sevilay Kirci ;
Atakut, Cigdem .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 :153-163
[10]  
Ciupa A., 1995, Stud. Univ. Babes-Bolyai, Math., V40, P39