Review on data-driven modeling and monitoring for plant-wide industrial processes

被引:496
作者
Ge, Zhiqiang [1 ]
机构
[1] Zhejiang Univ, State Key Lab Ind Control Technol, Inst Ind Proc Control, Coll Control Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Plant-wide process; Data-driven modeling; Process monitoring; ROOT-CAUSE DIAGNOSIS; CONTROL-SYSTEM DESIGN; FAULT-DETECTION; QUALITY-RELEVANT; COMPONENT ANALYSIS; PERFORMANCE; OSCILLATIONS; PCA; IDENTIFICATION; OPTIMIZATION;
D O I
10.1016/j.chemolab.2017.09.021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data-driven modeling and applications in plant-wide processes have recently caught much attention in both academy and industry. This paper provides a systematic review on data-driven modeling and monitoring for plant-wide processes. First, methodologies of commonly used data processing and modeling procedures for the plant-wide process are presented. Detailed research statuses on various aspects for plant-wide process monitoring are reviewed since 2000. After that, extensions, opportunities, and challenges on data-driven modeling for plant wide process monitoring are discussed and highlighted for future research.
引用
收藏
页码:16 / 25
页数:10
相关论文
共 129 条
[51]   Monitoring multi-mode plant-wide processes by using mutual information-based multi-block PCA, joint probability, and Bayesian inference [J].
Jiang, Qingchao ;
Yan, Xuefeng .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2014, 136 :121-137
[52]   Plant-wide control system design: Secondary controlled variable selection [J].
Jones, Dustin ;
Bhattacharyya, Debangsu ;
Turton, Richard ;
Zitney, Stephen E. .
COMPUTERS & CHEMICAL ENGINEERING, 2014, 71 :253-262
[53]   Data-driven Soft Sensors in the process industry [J].
Kadlec, Petr ;
Gabrys, Bogdan ;
Strandt, Sibylle .
COMPUTERS & CHEMICAL ENGINEERING, 2009, 33 (04) :795-814
[54]   The state of the art in chemical process control in Japan: Good practice and questionnaire survey [J].
Kano, Manabu ;
Ogawa, Morimasa .
JOURNAL OF PROCESS CONTROL, 2010, 20 (09) :969-982
[55]   Design of inferential sensors in the process industry: A review of Bayesian methods [J].
Khatibisepehr, Shima ;
Huang, Biao ;
Khare, Swanand .
JOURNAL OF PROCESS CONTROL, 2013, 23 (10) :1575-1596
[56]   Multi-block methods in multivariate process control [J].
Kohonen, Jarno ;
Reinikainen, Satu-Pia ;
Aaljoki, Kari ;
Perkio, Annikki ;
Vaananen, Taito ;
Hoskuldsson, Agnar .
JOURNAL OF CHEMOMETRICS, 2008, 22 (3-4) :281-287
[57]   An Effective Nonlinear Multivariable HMPC for USC Power Plant Incorporating NFN-Based Modeling [J].
Kong, Xiaobing ;
Liu, Xiangjie ;
Lee, Kwang Y. .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2016, 12 (02) :555-566
[58]   Fault diagnosis of the polypropylene production process (UNIPOL PP) using ANFIS [J].
Lau, C. K. ;
Heng, Y. S. ;
Hussain, M. A. ;
Nor, M. I. Mohamad .
ISA TRANSACTIONS, 2010, 49 (04) :559-566
[59]   Integrating independent component analysis and local outlier factor for plant-wide process monitoring [J].
Lee, Jaeshin ;
Kang, Bokyoung ;
Kang, Suk-Ho .
JOURNAL OF PROCESS CONTROL, 2011, 21 (07) :1011-1021
[60]   Quality Relevant Data-Driven Modeling and Monitoring of Multivariate Dynamic Processes: The Dynamic T-PLS Approach [J].
Li, Gang ;
Liu, Baosheng ;
Qin, S. Joe ;
Zhou, Donghua .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (12) :2262-2271