Review on data-driven modeling and monitoring for plant-wide industrial processes

被引:480
作者
Ge, Zhiqiang [1 ]
机构
[1] Zhejiang Univ, State Key Lab Ind Control Technol, Inst Ind Proc Control, Coll Control Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Plant-wide process; Data-driven modeling; Process monitoring; ROOT-CAUSE DIAGNOSIS; CONTROL-SYSTEM DESIGN; FAULT-DETECTION; QUALITY-RELEVANT; COMPONENT ANALYSIS; PERFORMANCE; OSCILLATIONS; PCA; IDENTIFICATION; OPTIMIZATION;
D O I
10.1016/j.chemolab.2017.09.021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data-driven modeling and applications in plant-wide processes have recently caught much attention in both academy and industry. This paper provides a systematic review on data-driven modeling and monitoring for plant-wide processes. First, methodologies of commonly used data processing and modeling procedures for the plant-wide process are presented. Detailed research statuses on various aspects for plant-wide process monitoring are reviewed since 2000. After that, extensions, opportunities, and challenges on data-driven modeling for plant wide process monitoring are discussed and highlighted for future research.
引用
收藏
页码:16 / 25
页数:10
相关论文
共 129 条
  • [51] Monitoring multi-mode plant-wide processes by using mutual information-based multi-block PCA, joint probability, and Bayesian inference
    Jiang, Qingchao
    Yan, Xuefeng
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2014, 136 : 121 - 137
  • [52] Plant-wide control system design: Secondary controlled variable selection
    Jones, Dustin
    Bhattacharyya, Debangsu
    Turton, Richard
    Zitney, Stephen E.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2014, 71 : 253 - 262
  • [53] Data-driven Soft Sensors in the process industry
    Kadlec, Petr
    Gabrys, Bogdan
    Strandt, Sibylle
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2009, 33 (04) : 795 - 814
  • [54] The state of the art in chemical process control in Japan: Good practice and questionnaire survey
    Kano, Manabu
    Ogawa, Morimasa
    [J]. JOURNAL OF PROCESS CONTROL, 2010, 20 (09) : 969 - 982
  • [55] Design of inferential sensors in the process industry: A review of Bayesian methods
    Khatibisepehr, Shima
    Huang, Biao
    Khare, Swanand
    [J]. JOURNAL OF PROCESS CONTROL, 2013, 23 (10) : 1575 - 1596
  • [56] Multi-block methods in multivariate process control
    Kohonen, Jarno
    Reinikainen, Satu-Pia
    Aaljoki, Kari
    Perkio, Annikki
    Vaananen, Taito
    Hoskuldsson, Agnar
    [J]. JOURNAL OF CHEMOMETRICS, 2008, 22 (3-4) : 281 - 287
  • [57] An Effective Nonlinear Multivariable HMPC for USC Power Plant Incorporating NFN-Based Modeling
    Kong, Xiaobing
    Liu, Xiangjie
    Lee, Kwang Y.
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2016, 12 (02) : 555 - 566
  • [58] Fault diagnosis of the polypropylene production process (UNIPOL PP) using ANFIS
    Lau, C. K.
    Heng, Y. S.
    Hussain, M. A.
    Nor, M. I. Mohamad
    [J]. ISA TRANSACTIONS, 2010, 49 (04) : 559 - 566
  • [59] Integrating independent component analysis and local outlier factor for plant-wide process monitoring
    Lee, Jaeshin
    Kang, Bokyoung
    Kang, Suk-Ho
    [J]. JOURNAL OF PROCESS CONTROL, 2011, 21 (07) : 1011 - 1021
  • [60] Quality Relevant Data-Driven Modeling and Monitoring of Multivariate Dynamic Processes: The Dynamic T-PLS Approach
    Li, Gang
    Liu, Baosheng
    Qin, S. Joe
    Zhou, Donghua
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (12): : 2262 - 2271