Representations of monomiality principle with Sheffer-type polynomials and boson normal ordering

被引:32
作者
Blasiak, P
Dattoli, G
Horzela, A
Penson, KA
机构
[1] Polish Acad Sci, H Niewodnicanzki Inst Nucl Phys, PL-31342 Krakow, Poland
[2] ENEA, Ctr Ric Frascati, Dipartimento Innovaz, Div Fis Applicata, I-00044 Frascati, Italy
[3] Univ Paris 06, CNRS, Lab Phys Theor Mat Condensee, UMR 7600, F-75252 Paris, France
关键词
monomiality principle; Sheffer-type polynonnals; boson normal ordering;
D O I
10.1016/j.physleta.2005.11.052
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct explicit representations of the Heisenberg-Weyl algebra [P, M] = I in terms of ladder operators acting in the space of Sheffertype polynomials. Thus we establish a link between the monomiality principle and the umbral calculus. We use certain operator identities which allow one to evaluate explicitly special boson matrix elements between the coherent states. This yields a general demonstration of boson normal ordering of operator functions linear in either creation or annihilation operators. We indicate possible applications of these methods in other fields. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:7 / 12
页数:6
相关论文
共 31 条
[1]   THE SOLUTION SPACE OF THE UNITARY MATRIX MODEL STRING EQUATION AND THE SATO GRASSMANNIAN [J].
ANAGNOSTOPOULOS, KN ;
BOWICK, MJ ;
SCHWARZ, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 148 (03) :469-485
[2]  
[Anonymous], ADV COMBINATORICS
[3]   Some results on quasi-monomiality [J].
Ben Cheikh, Y .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 141 (01) :63-76
[4]  
BENDER CM, 1991, RIGOROUS RESULTS IN QUANTUM DYNAMICS, P99
[5]   Boson normal ordering via substitutions and Sheffer-type polynomials [J].
Blasiak, P ;
Horzela, A ;
Penson, KA ;
Duchamp, GHE ;
Solomon, AI .
PHYSICS LETTERS A, 2005, 338 (02) :108-116
[6]  
CESARANO C, 2001, ADV SPECIAL FUNCTION, P147
[7]   Canonical commutation relation preserving maps [J].
Chryssomalakos, C ;
Turbiner, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (48) :10475-10485
[8]   On the Lambert W function [J].
Corless, RM ;
Gonnet, GH ;
Hare, DEG ;
Jeffrey, DJ ;
Knuth, DE .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 5 (04) :329-359
[9]  
Dattoli G, 1997, NUOVO CIMENTO B, V112, P133
[10]   Operational methods, special polynomial and functions and solution of partial differential equations [J].
Dattoli, G ;
Ricci, PE ;
Khomasuridze, I .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2004, 15 (04) :309-321