Water-Hydrogen-Polaron Coupling at Anatase TiO2(101) Surfaces: A Hybrid Density Functional Theory Study

被引:16
作者
Zhu, Ya-Nan [1 ,2 ]
Teobaldi, Gilberto [3 ,4 ,5 ]
Liu, Li-Min [1 ]
机构
[1] Beihang Univ, Sch Phys, Beijing 100191, Peoples R China
[2] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[3] Rutherford Appleton Lab, STFC UKRI, Sci Comp Dept, Harwell Campus, Didcot OX11 0QX, Oxon, England
[4] Univ Liverpool, Stephenson Inst Renewable Energy, Dept Chem, Liverpool L69 3BX, Merseyside, England
[5] Univ Southampton, Sch Chem, Southampton SO17 1BJ, Hants, England
基金
中国国家自然科学基金;
关键词
EXCESS ELECTRONS; OXYGEN VACANCIES; RUTILE; TIO2; CHEMISTRY; PHOTOCATALYSIS; EXCHANGE; MOTION; BULK;
D O I
10.1021/acs.jpclett.0c00917
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Defects and water generally coexist on the surfaces of reducible metal oxides for heterogeneous photocatalysis in aqueous environments, which makes quantification and understanding of their coupling essential for development of practical solutions. Here we explore and quantify the coupling between water (H2O)- and hydrogen (H)-induced electron-polarons on the TiO2 anatase (101) surface by means of first-principles simulations. Without H2O, the hydrogen-induced electron-polaron localizes preferentially around the energetically favored subsurface H site. Its hopping barrier to neighboring sites in the subsurface is about 0.29 eV. Conversely, following H2O adsorption, surface trapping of the electron-polaron becomes energetically favored, and the diffusion barrier from subsurface to surface decreases by 0.15 eV. H2O adsorption is shown to be effective in decreasing the proton diffusion energy barrier within the same layer by reducing the polaron-proton coupling and promoting diffusion toward the subsurface in line with a recent experimental observation on water-dispersed anatase TiO2 nanoparticles.
引用
收藏
页码:4317 / 4325
页数:9
相关论文
共 54 条
[1]   Toward reliable density functional methods without adjustable parameters: The PBE0 model [J].
Adamo, C ;
Barone, V .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (13) :6158-6170
[2]   Hydrogen interaction with the anatase TiO2(101) surface [J].
Aschauer, Ulrich ;
Selloni, Annabella .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (48) :16595-16602
[3]   Polarons in crystalline and non-crystalline materials [J].
Austin, IG ;
Mott, NF .
ADVANCES IN PHYSICS, 2001, 50 (07) :757-812
[4]   Does Polaronic Self-Trapping Occur at Anatase TiO2 Surfaces? [J].
Carey, John J. ;
McKenna, Keith P. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (48) :27540-27553
[5]   Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals [J].
Chen, Xiaobo ;
Liu, Lei ;
Yu, Peter Y. ;
Mao, Samuel S. .
SCIENCE, 2011, 331 (6018) :746-750
[6]   Energetics and diffusion of intrinsic surface and subsurface defects on anatase TiO2(101) [J].
Cheng, Hongzhi ;
Selloni, Annabella .
JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (05)
[7]   Surface and subsurface oxygen vacancies in anatase TiO2 and differences with rutile [J].
Cheng, Hongzhi ;
Selloni, Annabella .
PHYSICAL REVIEW B, 2009, 79 (09)
[8]   Excess electrons stabilized on ionic oxide surfaces [J].
Chiesa, Mario ;
Paganini, Maria Cristina ;
Giamello, Elio ;
Murphy, Damien M. ;
Di Valentin, Cristiana ;
Pacchioni, Gianfranco .
ACCOUNTS OF CHEMICAL RESEARCH, 2006, 39 (11) :861-867
[9]   Electron transport via polaron hopping in bulk TiO2:: A density functional theory characterization [J].
Deskins, N. Aaron ;
Dupuis, Michel .
PHYSICAL REVIEW B, 2007, 75 (19)
[10]   Defining the Role of Excess Electrons in the Surface Chemistry of TiO2 [J].
Deskins, N. Aaron ;
Rousseau, Roger ;
Dupuis, Michel .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (13) :5891-5897