On hybrid Caputo fractional integro-differential inclusions with nonlocal conditions

被引:18
作者
Ahmad, Bashir [1 ]
Ntouyas, Sotiris K. [1 ,2 ]
Tariboon, Jessada [3 ]
机构
[1] King Abdulaziz Univ, Dept Math, NAAM Res Grp, Fac Sci, POB 80203, Jeddah 21589, Saudi Arabia
[2] Univ Ioannina, Dept Math, Ioannina 45110, Greece
[3] King Mongkuts Univ Technol North Bangkok, Nonlinear Dynam Anal Res Ctr, Fac Sci Appl, Dept Math, Bangkok 10800, Thailand
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2016年 / 9卷 / 06期
关键词
Caputo fractional derivative; integro-differential inclusion; hybrid boundary value problem; fixed point theorem; BOUNDARY-VALUE-PROBLEMS; DIFFERENTIAL-EQUATIONS; POSITIVE SOLUTIONS; EXTREMAL SOLUTIONS; EXISTENCE;
D O I
10.22436/jnsa.009.06.65
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the existence of solutions for a nonlocal hybrid boundary value problem of Caputo fractional integro-differential inclusions. A hybrid fixed point theorem of Schaefer type for a sum of three operators due to Dhage is applied to obtain the main result. The paper concludes with an illustrative example. (C) 2016 All rights reserved.
引用
收藏
页码:4235 / 4246
页数:12
相关论文
共 27 条
[1]   Positive solutions for mixed problems of singular fractional differential equations [J].
Agarwal, Ravi P. ;
O'Regan, Donal ;
Stanek, Svatoslav .
MATHEMATISCHE NACHRICHTEN, 2012, 285 (01) :27-41
[2]  
Ahmad B., 2011, ELECT J QUAL THEORY, V2011
[3]  
Ahmad B., 2014, ABSTR APPL AN, V2014
[4]  
Ahmad B., 2014, SCI WORLD J, V2014
[5]   A NONLOCAL HYBRID BOUNDARY VALUE PROBLEM OF CAPUTO FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS [J].
Ahmad, Bashir ;
Ntouyasi, Sotiris K. ;
Tariboon, Jessada .
ACTA MATHEMATICA SCIENTIA, 2016, 36 (06) :1631-1640
[6]   NONLOCAL FRACTIONAL BOUNDARY VALUE PROBLEMS WITH SLIT-STRIPS BOUNDARY CONDITIONS [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (01) :261-280
[7]   Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations [J].
Ahmad, Bashir .
APPLIED MATHEMATICS LETTERS, 2010, 23 (04) :390-394
[8]  
[Anonymous], 2006, THEORY APPL FRACTION
[9]   Existence and multiplicity of positive solutions for singular fractional boundary value problems [J].
Bai, Zhanbing ;
Sun, Weichen .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 63 (09) :1369-1381
[10]  
Deimling K., 1992, De Gruyter Series in Nonlinear Analysis and Applications