Modeling the outcome of structural disconnection on resting-state functional connectivity

被引:131
作者
Cabral, Joana [1 ,2 ]
Hugues, Etienne [1 ]
Kringelbach, Morten L. [2 ,3 ]
Deco, Gustavo [1 ,4 ]
机构
[1] Univ Pompeu Fabra, Theoret & Computat Neurosci Grp, Ctr Brain & Cognit, Barcelona 08018, Spain
[2] Univ Oxford, Dept Psychiat, Oxford, England
[3] Aarhus Univ, CFIN, Aarhus, Denmark
[4] Inst Catala Recerca & Estudis Avancats, Barcelona, Spain
关键词
Computational model; Structural connectivity; Disconnection; Functional network; Graph-theory; Small-world; Schizophrenia; SMALL-WORLD; SYNAPTIC PLASTICITY; NETWORK STRUCTURE; CEREBRAL-CORTEX; BRAIN NETWORKS; SCHIZOPHRENIA; FMRI; DYSCONNECTION; ORGANIZATION; INTEGRATION;
D O I
10.1016/j.neuroimage.2012.06.007
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A growing body of experimental evidence suggests that functional connectivity at rest is shaped by the underlying anatomical structure. Furthermore, the organizational properties of resting-state functional networks are thought to serve as the basis for an optimal cognitive integration. A disconnection at the structural level, as occurring in some brain diseases, would then lead to functional and presumably cognitive impairments. In this work, we propose a computational model to investigate the role of a structural disconnection (encompassing putative local/global and axonal/synaptic mechanisms) on the organizational properties of emergent functional networks. The brain's spontaneous neural activity and the corresponding hemodynamic response were simulated using a large-scale network model, consisting of local neural populations coupled through white matter fibers. For a certain coupling strength, simulations reproduced healthy resting-state functional connectivity with graph properties in the range of the ones reported experimentally. When the structural connectivity is decreased, either globally or locally, the resultant simulated functional connectivity exhibited a network reorganization characterized by an increase in hierarchy, efficiency and robustness, a decrease in small-worldness and clustering and a narrower degree distribution, in the same way as recently reported for schizophrenia patients. Theoretical results indicate that most disconnection-related neuropathologies should induce the same qualitative changes in resting-state brain activity. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1342 / 1353
页数:12
相关论文
共 72 条
  • [1] A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs
    Achard, S
    Salvador, R
    Whitcher, B
    Suckling, J
    Bullmore, ET
    [J]. JOURNAL OF NEUROSCIENCE, 2006, 26 (01) : 63 - 72
  • [2] Modeling the Impact of Lesions in the Human Brain
    Alstott, Jeffrey
    Breakspear, Michael
    Hagmann, Patric
    Cammoun, Leila
    Sporns, Olaf
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (06)
  • [3] [Anonymous], 1906, GRUNDRISSE PSYCHIAT
  • [4] Hierarchical organization of human cortical networks in health and schizophrenia
    Bassett, Danielle S.
    Bullmore, Edward T.
    Verchinski, Beth A.
    Mattay, Venkata S.
    Weinberger, Daniel R.
    Meyer-Lindenberg, Andreas
    [J]. JOURNAL OF NEUROSCIENCE, 2008, 28 (37) : 9239 - 9248
  • [5] Altered resting state complexity in schizophrenia
    Bassett, Danielle S.
    Nelson, Brent G.
    Mueller, Bryon A.
    Camchong, Jazmin
    Lim, Kelvin O.
    [J]. NEUROIMAGE, 2012, 59 (03) : 2196 - 2207
  • [6] Conserved and variable architecture of human white matter connectivity
    Bassett, Danielle S.
    Brown, Jesse A.
    Deshpande, Vibhas
    Carlson, Jean M.
    Grafton, Scott T.
    [J]. NEUROIMAGE, 2011, 54 (02) : 1262 - 1279
  • [7] Small-world brain networks
    Bassett, Danielle Smith
    Bullmore, Edward T.
    [J]. NEUROSCIENTIST, 2006, 12 (06) : 512 - 523
  • [8] FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI
    BISWAL, B
    YETKIN, FZ
    HAUGHTON, VM
    HYDE, JS
    [J]. MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) : 537 - 541
  • [9] Complex networks: Structure and dynamics
    Boccaletti, S.
    Latora, V.
    Moreno, Y.
    Chavez, M.
    Hwang, D. -U.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5): : 175 - 308
  • [10] Complex brain networks: graph theoretical analysis of structural and functional systems
    Bullmore, Edward T.
    Sporns, Olaf
    [J]. NATURE REVIEWS NEUROSCIENCE, 2009, 10 (03) : 186 - 198