Large deviations of the extreme eigenvalues of random deformations of matrices

被引:29
作者
Benaych-Georges, F. [1 ]
Guionnet, A. [2 ]
Maida, M. [3 ]
机构
[1] Univ Paris 06, LPMA, F-75252 Paris 05, France
[2] ENS Lyon, UMPA, F-69364 Lyon 07, France
[3] Univ Paris 11, Math Lab, Fac Sci, F-91405 Orsay, France
关键词
Random matrices; Large deviations; SPECTRAL MEASURE; MODERATE DEVIATIONS; UNIVERSALITY;
D O I
10.1007/s00440-011-0382-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a real diagonal deterministic matrix X (n) of size n with spectral measure converging to a compactly supported probability measure. We perturb this matrix by adding a random finite rank matrix, with delocalized eigenvectors. We show that the joint law of the extreme eigenvalues of the perturbed model satisfies a large deviation principle in the scale n, with a good rate function given by a variational formula. We tackle both cases when the extreme eigenvalues of X (n) converge to the edges of the support of the limiting measure and when we allow some eigenvalues of X (n) , that we call outliers, to converge out of the bulk. We can also generalise our results to the case when X (n) is random, with law proportional to e (-n Tr V(X)) dX, for V growing fast enough at infinity and any perturbation of finite rank.
引用
收藏
页码:703 / 751
页数:49
相关论文
共 35 条
[1]   A CLT for a band matrix model [J].
Anderson, GW ;
Zeitouni, O .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 134 (02) :283-338
[2]  
[Anonymous], 2001, NOT AM MATH SOC
[3]  
[Anonymous], 1985, Matrix Analysis
[4]  
Bai Z, 2010, SPRINGER SER STAT, P1, DOI 10.1007/978-1-4419-0661-8
[5]  
Bai ZD, 1998, ANN PROBAB, V26, P316
[6]   Central limit theorems for eigenvalues in a spiked population model [J].
Bai, Zhidong ;
Yao, Jian-Feng .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2008, 44 (03) :447-474
[7]   Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices [J].
Baik, J ;
Ben Arous, G ;
Péché, S .
ANNALS OF PROBABILITY, 2005, 33 (05) :1643-1697
[8]  
Ben Arous G, 2001, PROBAB THEORY REL, V120, P1
[9]  
BenArous G, 1997, PROBAB THEORY REL, V108, P517
[10]  
Benaych-Georges F., 2011, ELECT J PRO IN PRESS