Structured variable selection in support vector machines

被引:8
|
作者
Wu, Seongho [1 ]
Zou, Hui [1 ]
Yuan, Ming [2 ]
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
[2] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA
来源
ELECTRONIC JOURNAL OF STATISTICS | 2008年 / 2卷
基金
美国国家科学基金会;
关键词
Classification; Heredity; Nonparametric estimation; Support vector machine; Variable selection;
D O I
10.1214/07-EJS125
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
When applying the support vector machine (SVM) to high-dimensional classification problems, we often impose a sparse structure in the SVM to eliminate the influences of the irrelevant predictors. The lasso and other variable selection techniques have been successfully used in the SVM to perform automatic variable selection. In some problems, there is a natural hierarchical structure among the variables. Thus, in order to have an interpretable SVM classifier, it is important to respect the heredity principle when enforcing the sparsity in the SVM. Many variable selection methods, however, do not respect the heredity principle. In this paper we enforce both sparsity and the heredity principle in the SVM by using the so-called structured variable selection (SVS) framework originally proposed in [20]. We minimize the empirical hinge loss under a set of linear inequality constraints and a lasso-type penalty. The solution always obeys the desired heredity principle and enjoys sparsity. The new SVM classifier can be efficiently fitted, because the optimization problem is a linear program. Another contribution of this work is to present a nonparametric extension of the SVS framework, and we propose nonparametric heredity SVMs. Simulated and real data are used to illustrate the merits of the proposed method.
引用
收藏
页码:103 / 117
页数:15
相关论文
共 50 条
  • [41] Feature Selection Based On Linear Twin Support Vector Machines
    Yang, Zhi-Min
    He, Jun-Yun
    Shao, Yuan-Hai
    FIRST INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT, 2013, 17 : 1039 - 1046
  • [42] An Hybrid Parallel Implementation of Model Selection for Support Vector Machines
    Ripepi, Giuseppe
    Clematis, Andrea
    D'Agostino, Daniele
    23RD EUROMICRO INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED, AND NETWORK-BASED PROCESSING (PDP 2015), 2015, : 145 - 149
  • [43] Feature Selection for Support Vector Machines Base on Modified Artificial Fish Swarm Algorithm
    Lin, Kuan-Cheng
    Chen, Sih-Yang
    Hung, Jason C.
    UBIQUITOUS COMPUTING APPLICATION AND WIRELESS SENSOR, 2015, 331 : 297 - 304
  • [44] Variable selection using support vector regression and random forests: A comparative study
    Ben Ishak, Anis
    INTELLIGENT DATA ANALYSIS, 2016, 20 (01) : 83 - 104
  • [45] Classifying Structured Web Sources Using Support Vector Machine and Aggressive Feature Selection
    Le, Hieu Quang
    Conrad, Stefan
    WEB INFORMATION SYSTEMS AND TECHNOLOGIES, 2010, 45 : 270 - 282
  • [46] Nonstationary regression with support vector machines
    Grinblat, Guillermo L.
    Uzal, Lucas C.
    Verdes, Pablo F.
    Granitto, Pablo M.
    NEURAL COMPUTING & APPLICATIONS, 2015, 26 (03) : 641 - 649
  • [47] Clustering categories in support vector machines
    Carrizosa, Emilio
    Nogales-Gomez, Amaya
    Morales, Dolores Romero
    OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2017, 66 : 28 - 37
  • [48] The consistency of multicategory support vector machines
    Di-Rong Chen
    Dao-Hong Xiang
    Advances in Computational Mathematics, 2006, 24 : 155 - 169
  • [49] The consistency of multicategory support vector machines
    Chen, DR
    Xiang, DH
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2006, 24 (1-4) : 155 - 169
  • [50] Twin support vector machines: A survey
    Huang, Huajuan
    Wei, Xiuxi
    Zhou, Yongquan
    NEUROCOMPUTING, 2018, 300 : 34 - 43