Compressive fluorescence microscopy for biological and hyperspectral imaging

被引:316
作者
Studer, Vincent [1 ,2 ]
Bobin, Jerome [3 ]
Chahid, Makhlad [1 ,2 ]
Mousavi, Hamed Shams [1 ,2 ]
Candes, Emmanuel [4 ,5 ,6 ]
Dahan, Maxime [7 ]
机构
[1] Univ Bordeaux 2, Interdisciplinary Inst Neurosci, Unite Mixte Rech 5297, F-33000 Bordeaux, France
[2] CNRS, Interdisciplinary Inst Neurosci, Unite Mixte Rech 5297, F-33000 Bordeaux, France
[3] Commissariat Energie Atom Saclay, Inst Rech Lois Fondamentales Univers, Serv Astrophys, Serv Elect Detecteurs & Informat, F-91191 Gif Sur Yvette, France
[4] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[6] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[7] Univ Paris 06, Ecole Normale Super, CNRS, Lab Kastler Brossel,Unite Mixte Rech 8552, F-75005 Paris, France
基金
美国国家科学基金会;
关键词
biological imaging; compressed sensing; computational imaging; sparse signals; RECONSTRUCTION; SUPERRESOLUTION; ILLUMINATION; PROTEIN;
D O I
10.1073/pnas.1119511109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The mathematical theory of compressed sensing (CS) asserts that one can acquire signals from measurements whose rate is much lower than the total bandwidth. Whereas the CS theory is now well developed, challenges concerning hardware implementations of CS-based acquisition devices-especially in optics-have only started being addressed. This paper presents an implementation of compressive sensing in fluorescence microscopy and its applications to biomedical imaging. Our CS microscope combines a dynamic structured wide-field illumination and a fast and sensitive single-point fluorescence detection to enable reconstructions of images of fluorescent beads, cells, and tissues with undersampling ratios (between the number of pixels and number of measurements) up to 32. We further demonstrate a hyperspectral mode and record images with 128 spectral channels and undersampling ratios up to 64, illustrating the potential benefits of CS acquisition for higher-dimensional signals, which typically exhibits extreme redundancy. Altogether, our results emphasize the interest of CS schemes for acquisition at a significantly reduced rate and point to some remaining challenges for CS fluorescence microscopy.
引用
收藏
页码:E1679 / E1687
页数:9
相关论文
共 34 条
[1]  
[Anonymous], ARXIV11094424
[2]   Bayesian Compressive Sensing Via Belief Propagation [J].
Baron, Dror ;
Sarvotham, Shriram ;
Baraniuk, Richard G. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (01) :269-280
[3]   NESTA: A Fast and Accurate First-Order Method for Sparse Recovery [J].
Becker, Stephen ;
Bobin, Jerome ;
Candes, Emmanuel J. .
SIAM JOURNAL ON IMAGING SCIENCES, 2011, 4 (01) :1-39
[4]   Compressed Sensing in Astronomy [J].
Bobin, Jerome ;
Starck, Jean-Luc ;
Ottensamer, Roland .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2008, 2 (05) :718-726
[5]   Compressive Holography [J].
Brady, David J. ;
Choi, Kerkil ;
Marks, Daniel L. ;
Horisaki, Ryoichi ;
Lim, Sehoon .
OPTICS EXPRESS, 2009, 17 (15) :13040-13049
[6]  
Brady DJ, 2010, OPTICAL IMAGING SPEC
[7]   New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities [J].
Candès, EJ ;
Donoho, DL .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (02) :219-266
[8]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[9]   Sparsity and incoherence in compressive sampling [J].
Candes, Emmanuel ;
Romberg, Justin .
INVERSE PROBLEMS, 2007, 23 (03) :969-985
[10]   A Probabilistic and RIPless Theory of Compressed Sensing [J].
Candes, Emmanuel J. ;
Plan, Yaniv .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (11) :7235-7254