The annihilating graph of a ring

被引:0
作者
Shafiei, Z. [1 ]
Maghasedi, M. [1 ]
Heydari, F. [1 ]
Khojasteh, S. [2 ]
机构
[1] Islamic Azad Univ, Karaj Branch, Dept Math, Karaj, Iran
[2] Islamic Azad Univ, Lahijan Branch, Dept Math, Lahijan, Iran
关键词
Annihilating graph; Diameter; Girth; Planarity; COMMUTATIVE RINGS;
D O I
10.1007/s40096-017-0238-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a commutative ring with unity. The annihilating graph of A, denoted by G(A), is a graph whose vertices are all non-trivial ideals of A and two distinct vertices I and J are adjacent if and only if Ann(I)Ann(J) = 0. For every commutative ring A, we study the diameter and the girth of G(A). Also, we prove that if G(A) is a triangle-free graph, then G(A) is a bipartite graph. Among other results, we show that if G(A) is a tree, then G(A) is a star or a double star graph. Moreover, we prove that the annihilating graph of a commutative ring cannot be a cycle. Let n be a positive integer number. We classify all integer numbers n for which G(Z(n)) is a complete or a planar graph. Finally, we compute the domination number of G(Z(n)).
引用
收藏
页码:1 / 6
页数:6
相关论文
共 9 条
[1]   The Classification of the Annihilating-Ideal Graphs of Commutative Rings [J].
Aalipour, G. ;
Akbar, S. ;
Behboodi, M. ;
Nikandish, R. ;
Nikmehr, M. J. ;
Shaveisi, F. .
ALGEBRA COLLOQUIUM, 2014, 21 (02) :249-256
[2]   The proof of a conjecture in Jacobson graph of a commutative ring [J].
Akbari, S. ;
Khojasteh, S. ;
Yousefzadehfard, A. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (10)
[3]   The intersection graph of a group [J].
Akbari, S. ;
Heydari, F. ;
Maghasedi, M. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (05)
[4]   THE REGULAR GRAPH OF A NONCOMMUTATIVE RING [J].
Akbari, S. ;
Heydari, F. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (01) :132-140
[5]   COMMUTATIVE RINGS WHOSE COZERO-DIVISOR GRAPHS ARE UNICYCLIC OR OF BOUNDED DEGREE [J].
Akbari, S. ;
Khojasteh, S. .
COMMUNICATIONS IN ALGEBRA, 2014, 42 (04) :1594-1605
[6]  
Atiyah MF., 1969, INTRO COMMUTATIVE AL
[7]  
Bondy A., 2008, GRAPH THEORY
[8]  
Rad NJ, 2016, ARS COMBINATORIA, V125, P401
[9]   On Domination in Zero-Divisor Graphs [J].
Rad, Nader Jafari ;
Jafari, Sayyed Heidar ;
Mojdeh, Doost Ali .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2013, 56 (02) :407-411