Unexpected power-law stress relaxation of entangled ring polymers

被引:493
作者
Kapnistos, M. [1 ,2 ]
Lang, M. [3 ,4 ]
Vlassopoulos, D. [1 ,5 ]
Pyckhout-Hintzen, W. [6 ]
Richter, D. [6 ]
Cho, D. [7 ]
Chang, T. [7 ]
Rubinstein, M. [3 ]
机构
[1] FORTH, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece
[2] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
[3] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA
[4] Leibniz Inst Polymer Res Dresden, D-01005 Dresden, Germany
[5] Univ Crete, Dept Mat Sci & Technol, Iraklion 71003, Greece
[6] Forschungszentrum Julich, Inst Solid State Res, D-52425 Julich, Germany
[7] Pohang Univ Sci & Technol, Dept Chem, Pohang 790784, South Korea
关键词
D O I
10.1038/nmat2292
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
After many years of intense research, most aspects of the motion of entangled polymers have been understood. Long linear and branched polymers have a characteristic entanglement plateau and their stress relaxes by chain reptation or branch retraction, respectively. In both mechanisms, the presence of chain ends is essential. But how do entangled polymers without ends relax their stress? Using properly purified high-molar-mass ring polymers, we demonstrate that these materials exhibit self-similar dynamics, yielding a power-law stress relaxation. However, trace amounts of linear chains at a concentration almost two decades below their overlap cause an enhanced mechanical response. An entanglement plateau is recovered at higher concentrations of linear chains. These results constitute an important step towards solving an outstanding problem of polymer science and are useful for manipulating properties of materials ranging from DNA to polycarbonate. They also provide possible directions for tuning the rheology of entangled polymers.
引用
收藏
页码:997 / 1002
页数:6
相关论文
共 47 条
[1]   An "endless" route to cyclic polymers [J].
Bielawski, CW ;
Benitez, D ;
Grubbs, RH .
SCIENCE, 2002, 297 (5589) :2041-2044
[2]   Influence of topological constraints on the statics and dynamics of ring polymers [J].
Brown, S ;
Lenczycki, T ;
Szamel, G .
PHYSICAL REVIEW E, 2001, 63 (05) :528011-528014
[3]   CONJECTURES ON THE STATISTICS OF RING POLYMERS [J].
CATES, ME ;
DEUTSCH, JM .
JOURNAL DE PHYSIQUE, 1986, 47 (12) :2121-2128
[4]   REPTATION OF A POLYMER CHAIN IN PRESENCE OF FIXED OBSTACLES [J].
DEGENNES, PG .
JOURNAL OF CHEMICAL PHYSICS, 1971, 55 (02) :572-+
[5]   REPTATION OF STARS [J].
DEGENNES, PG .
JOURNAL DE PHYSIQUE, 1975, 36 (12) :1199-1203
[6]  
DOI M, 1980, J POLYM SCI POL LETT, V18, P775, DOI 10.1002/pol.1980.130181205
[7]  
DOI M, 1978, J CHEM SOC FARAD T 2, V74, P1789, DOI 10.1039/f29787401789
[8]  
Doi M., 1986, The Theory of Polymer Dynamics
[9]  
Ferry D.J., 1980, Viscoelastic Properties of Polymers, V3e
[10]  
FETTERS LJ, 2006, PHYS PROPERTIES POLY