Maintaining case knowledge vocabulary using a new evidential attribute clustering method

被引:0
作者
Ben Ayed, S. [1 ]
Elouedi, Z. [1 ]
Lefevre, E. [2 ]
机构
[1] Univ Tunis, Inst Super Gest Tunis, LARODEC, 41 Ave Liberte, Le Bardo 2000, Tunisia
[2] Univ Artois, EA 3926, LGI2A, F-62400 Bethune, France
来源
DATA SCIENCE AND KNOWLEDGE ENGINEERING FOR SENSING DECISION SUPPORT | 2018年 / 11卷
关键词
Case based reasoning; maintenance; case vocabulary; attribute clustering; belief function theory; feature selection;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Maintaining the vocabulary of case knowledge within Case Based Reasoning (CBR) presents a crucial task to ensure a high-quality problem-solving and to improve retrieval performance for large-scale CBR systems. To do, we propose, in this paper, a method that manages uncertainty while selecting the best attributes characterizing case knowledge by using belief function theory. Actually, this method is based on a new evidential attribute clustering technique to eliminate redundant and noisy attributes describing cases.
引用
收藏
页码:347 / 354
页数:8
相关论文
共 16 条
[1]  
AAMODT A, 1994, AI COMMUN, V7, P39
[2]  
Arshadi N., 2005, FLAIRS C, P99
[3]   ECTD: Evidential Clustering and case Types Detection for case base maintenance [J].
Ben Ayed, Safa ;
Elouedi, Zied ;
Lefevre, Eric .
2017 IEEE/ACS 14TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2017, :1462-1469
[4]   UPPER AND LOWER PROBABILITIES INDUCED BY A MULTIVALUED MAPPING [J].
DEMPSTER, AP .
ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (02) :325-&
[5]   EVCLUS: Evidential clustering of proximity data [J].
Denoeux, T ;
Masson, MH .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (01) :95-109
[6]  
Hong TP, 2007, PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, P2286
[7]   k-EVCLUS: Clustering Large Dissimilarity Data in the Belief Function Framework [J].
Kanjanatarakul, Orakanya ;
Sriboonchitta, Songsak ;
Denoeux, Thierry .
BELIEF FUNCTIONS: THEORY AND APPLICATIONS, (BELIEF 2016), 2016, 9861 :105-112
[8]  
Kononenko I., 1994, Machine Learning: ECML-94. European Conference on Machine Learning. Proceedings, P171
[9]   Fuzzy-Rough Supervised Attribute Clustering Algorithm and Classification of Microarray Data [J].
Maji, Pradipta .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2011, 41 (01) :222-233
[10]   RECM: Relational evidential c-means algorithm [J].
Masson, Marie-Helene ;
Denoeux, Thierry .
PATTERN RECOGNITION LETTERS, 2009, 30 (11) :1015-1026