Some uniform estimates in products of random matrices

被引:10
作者
Tsay, J [1 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
来源
TAIWANESE JOURNAL OF MATHEMATICS | 1999年 / 3卷 / 03期
关键词
Lyapunov exponent; invariant measure; random matrix;
D O I
10.11650/twjm/1500407129
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each product of random matrices, there associated an invariant measure on the projective space. The convergence to the invariant measure is exponentially fast; In this paper we give uniform estimates on the exponential convergence when the distribution of the random matrices depends on a compact set of parameters.
引用
收藏
页码:291 / 302
页数:12
相关论文
共 10 条
[1]  
Bougerol P., 1985, PRODUCTS RANDOM MATR
[2]  
FLANDERS H, 1963, DIFFERENTIAL FORM AP
[3]   RANDOM MATRIX PRODUCTS AND MEASURES ON PROJECTIVE SPACES [J].
FURSTENBERG, H ;
KIFER, Y .
ISRAEL JOURNAL OF MATHEMATICS, 1983, 46 (1-2) :12-32
[4]   PRODUCTS OF RANDOM MATRICES [J].
FURSTENBERG, H ;
KESTEN, H .
ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (02) :457-469
[5]  
Furstenberg H., 1963, T AM MATH SOC, V108, P377, DOI [DOI 10.2307/1993589, 10.1090/s0002-9947-1963-0163345-0, DOI 10.1090/S0002-9947-1963-0163345-0, 10.1090/S0002-9947-1963-0163345-0, 10.1090/S0002-9947-1]
[6]   THE FURSTENBERG BOUNDARY, CONTRACTION PROPERTIES AND CONVERGENCE THEOREMS [J].
GUIVARCH, Y ;
RAUGI, A .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 69 (02) :187-242
[7]  
KINGMAN JFC, 1968, J ROY STAT SOC B, V30, P499
[8]  
Lacroix J., 1983, Annales de l'Institut Henri Poincare, Section A (Physique Theorique), V38, P385
[9]  
Le Page E., 1982, Probability Measures on Groups (Oberwolfach, 1981) (Lecture Notes in Mathematics vol 928), ppp 258
[10]  
Oseledets V., 1968, Trans. Moscow Math. Soc, V19, P197