Genetic algorithm-based strategy for identifying association rules without specifying actual minimum support

被引:124
作者
Yan, Xiaowei [1 ]
Zhang, Chengqi [1 ]
Zhang, Shichao [2 ]
机构
[1] Univ Technol Sydney, Fac Informat Technol, Sydney, NSW 2007, Australia
[2] Guangxi Normal Univ, Sch Comp Sci & Informat Technol, Gui Lin, Guangxi, Peoples R China
关键词
Data mining; Association rule mining; Genetic algorithm; Threshold setting;
D O I
10.1016/j.eswa.2008.01.028
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We design a genetic algorithm-based strategy for identifying association rules without specifying actual minimum support. In this approach, an elaborate encoding method is developed, and the relative confidence is used as the fitness function. With genetic algorithm, a global search can be performed and system automation is implemented, because our model does not require the user-specified threshold of minimum support. Furthermore, we expand this strategy to cover quantitative association rule discovery. For efficiency, we design a generalized FP-tree to implement this algorithm. We experimentally evaluate our approach, and demonstrate that our algorithms significantly reduce the computation costs and generate interesting association rules only. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3066 / 3076
页数:11
相关论文
共 19 条
[1]  
Agrawal R., 1993, SIGMOD Record, V22, P207, DOI 10.1145/170036.170072
[2]  
[Anonymous], ADV SOFT COMPUTING
[3]  
[Anonymous], P 21 VLDB C SEP
[4]  
[Anonymous], 2003, Advances in evolutionary computing
[5]   An evolutionary approach for discovering changing patterns in historical data [J].
Au, WH ;
Chan, KCC .
DATA MINING AND KNOWLEDGE DISCOVERY: THEORY, TOOLS AND TECHNOLOGY IV, 2002, 4730 :398-409
[6]  
CHEUNG Y, 2004, IEEE T KNOWLEDGE DAT
[7]  
Fidelis MV, 2000, IEEE C EVOL COMPUTAT, P805, DOI 10.1109/CEC.2000.870381
[8]  
HAN J, 2000, P 2000 ACM SIGMOD IN, P1, DOI DOI 10.1145/342009.335372
[9]  
Han JW, 2002, 2002 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, P211, DOI 10.1109/ICDM.2002.1183905
[10]  
HIPP J, 2002, SIGKDD EXPLORATIONS, V41, P50