The cubic fourth-order Schrodinger equation

被引:137
作者
Pausader, Benoit [1 ]
机构
[1] Univ Cergy Pontoise, Dept Math, CNRS, UMR 8088, F-95302 Cergy Pontoise, France
关键词
Fourth-order dispersive equation; Scattering; Energy-critical equation; GLOBAL WELL-POSEDNESS; CAUCHY-PROBLEM; SCATTERING; INSTABILITY; REGULARITY;
D O I
10.1016/j.jfa.2008.11.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fourth-order Schrodinger equations have been introduced by Karpman and Shagalov to take into account the role of small fourth-order dispersion terms in the propagation of intense laser beams in a bulk medium with Kerr nonlinearity. In this paper we investigate the cubic defocusing fourth-order Schrodinger equation i partial derivative(t)u + Delta(2)u + vertical bar u vertical bar(2)u = 0 in arbitrary space dimension R-n for arbitrary initial data. We prove that the equation is globally well-posed when n <= 8 and ill-posed when n >= 9, with the additional important information that scattering holds true when 5 n <= 8. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:2473 / 2517
页数:45
相关论文
共 40 条
[1]  
ALAZARD T, MATH ANN IN PRESS
[2]   High frequency approximation of solutions to critical nonlinear wave equations [J].
Bahouri, H ;
Gérard, P .
AMERICAN JOURNAL OF MATHEMATICS, 1999, 121 (01) :131-175
[3]   Dispersion estimates for fourth order Schrodinger equations [J].
Ben-Artzi, M ;
Koch, H ;
Saut, JC .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (02) :87-92
[4]   Geometric optics and instability for semi-classical Schrodinger equations [J].
Carles, Remi .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (03) :525-553
[5]  
CAZENAVE T, 2003, COURANT I MATH SCI, V10
[6]  
CHRIST M, ANN I H POI IN PRESS
[7]   Global well-posedness and scattering for the energy-critical nonlinear Schrodinger equation in R3 [J].
Colliander, J. ;
Keel, M. ;
Staffilani, G. ;
Takaoka, H. ;
Tao, T. .
ANNALS OF MATHEMATICS, 2008, 167 (03) :767-865
[8]   Critical exponents and collapse of nonlinear Schrodinger equations with anisotropic fourth-order dispersion [J].
Fibich, G ;
Ilan, B ;
Schochet, S .
NONLINEARITY, 2003, 16 (05) :1809-1821
[9]   Self-focusing with fourth-order dispersion [J].
Fibich, G ;
Ilan, B ;
Papanicolaou, G .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (04) :1437-1462
[10]  
Gerard P., 1996, SEMIN EQU DERIV PART