Nanofiber-based La0.4Sr0.6TiO3-Gd0.2Ce0.8O1.9-Ni composite anode for solid oxide fuel cells

被引:26
作者
Hu, Qianjun [1 ]
Liu, Chaojun [1 ]
Fan, Liquan [2 ]
Wang, Yuwei [2 ]
Xiong, Yueping [1 ]
机构
[1] Harbin Inst Technol, Sch Chem Engn & Technol, 92 West Dazhi St, Harbin 150001, Heilongjiang, Peoples R China
[2] Qiqihar Univ, Coll Mat Sci & Engn, 42 Wenhua St, Qiqihar 161006, Peoples R China
基金
中国国家自然科学基金;
关键词
La0.4Sr0.6TiO3; Gd0.2Ce0.8O1.9; Ni; Stability; Carbon depositions; DOPED SRTIO3; SOFC; PERFORMANCE; STABILITY; REDOX; INFILTRATION; TEMPERATURE; SCAFFOLDS; OXIDATION; SUPPORT;
D O I
10.1016/j.electacta.2018.01.144
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
La0.4Sr0.6TiO3 (LST) nanofibers are prepared by electrospinning method, the LST nanofiber scaffolds are sintered on YSZ (8 mol% Y2O3-92 mol% ZrO2) electrolyte flakes, and Gd0.2Ce0.8O1.9 (GDC) and Ni infiltrate into La0.4Sr0.6TiO3 nanofiber scaffolds. In this paper, the nanofiber-based LST-GDC-Ni composite anodes are tested in H-2 or CH4 fuel gas, respectively, and show excellent thermal and redox cycling stability. Carbon deposition appears on the surface of nanofiber-based LST-GDC-Ni composite anodes after being fed with CH4 fuel gas for 100 h. The amount of carbon deposition is proportional to the mass ratio of Ni:LST. A small amount of carbon deposition boosts the electrochemical performance, however, a large amount of carbon deposition is the opposite. The optimal mass ratio of LST:GDC:Ni has been found to be 1:1:0.4. (c) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 34 条
[1]   Performance of Gd0.2Ce0.8O1.9 infiltrated La0.2Sr0.8TiO3 nanofiber scaffolds as anodes for solid oxide fuel cells: Redox stability and effects of electrolytes [J].
Fan, Liquan ;
Xiong, Yueping ;
Wang, Yuwei ;
Kishimoto, Haruo ;
Yamaji, Katsuhiko ;
Horita, Teruhisa .
JOURNAL OF POWER SOURCES, 2015, 294 :452-459
[2]   Performance of Gd0.2Ce0.8O1.9 infiltrated La0.2Sr0.8TiO3 nanofiber scaffolds as anodes for solid oxide fuel cells [J].
Fan, Liquan ;
Xiong, Yueping ;
Liu, Lianbao ;
Wang, Yuwei ;
Kishimoto, Haruo ;
Yamaji, Katsuhiko ;
Horita, Teruhisa .
JOURNAL OF POWER SOURCES, 2014, 265 :125-131
[3]   Porous, robust highly conducting Ni-YSZ thin film anodes prepared by magnetron sputtering at oblique angles for application as anodes and buffer layers in solid oxide fuel cells [J].
Garcia-Garcia, Francisco J. ;
Yubero, Francisco ;
Gonzalez-Elipe, Agustin R. ;
Balomenou, Stella P. ;
Tsiplakides, Dimitris ;
Petrakopoulou, Ioanna ;
Lambert, Richard M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (23) :7382-7387
[4]   Solid Oxide Fuel Cell Anode Materials for Direct Hydrocarbon Utilization [J].
Ge, Xiao-Ming ;
Chan, Siew-Hwa ;
Liu, Qing-Lin ;
Sun, Qiang .
ADVANCED ENERGY MATERIALS, 2012, 2 (10) :1156-1181
[5]  
Hu Q., 2017, CERAM INT
[6]   Electrical conductivity of yttrium-doped SrTiO3:: influence of transition metal additives [J].
Hui, SQ ;
Petric, A .
MATERIALS RESEARCH BULLETIN, 2002, 37 (07) :1215-1231
[7]   Degradation of SOFC Anodes upon Redox Cycling: A Comparison Between Ni/YSZ and Ni/CGO [J].
Iwanschitz, Boris ;
Sfeir, Josef ;
Mai, Andreas ;
Schuetze, Michael .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (02) :B269-B278
[8]   Stability of Ni Base Anode for Direct Hydrocarbon SOFCs [J].
Kishimoto, Haruo ;
Xiong, Yue-Ping ;
Yamaji, Katsuhiko ;
Horita, Teruhisa ;
Sakai, Natsuko ;
Brito, Manuel E. ;
Yokokawa, Harumi .
JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2007, 40 (13) :1178-1182
[9]   Surface tuned La0.9Ca0.1Fe0.9Nb0.1O3-δ based anode for direct methane solid oxide fuel cells by infiltration method [J].
Kong, Xiaowei ;
Tian, Yu ;
Zhou, Xiaoliang ;
Wu, Xiaoyan ;
Zhang, Jun .
ELECTROCHIMICA ACTA, 2017, 234 :71-81
[10]   Electro-spinning Pr0.4ASr0.6CO0.2Fe0.7Nb0.1O3-δ nanofibers infiltrated with Gd0.2Ce0.8O1.9 nanoparticles as cathode for intermediate temperature solid oxide fuel cell [J].
Liu, Xiaotian ;
Li, Mian ;
Wang, Zhuang ;
Zhang, Chengjia ;
Xiong, Yueping .
CERAMICS INTERNATIONAL, 2016, 42 (10) :11907-11912