Sobolev-Dirichlet problem for quasilinear elliptic equations in generalized Orlicz-Sobolev spaces

被引:9
作者
Benyaiche, Allami [1 ]
Khlifi, Ismail [1 ]
机构
[1] Ibn Tofail Univ, Dept Math, BP 133, Kenitra, Morocco
关键词
Generalized Phi-functions; Generalized Orlicz-Sobolev spaces; Obstacle problem; Sobolev-Dirichlet problem; Harnack inequality; Holder continuity; SETS; OBSTACLE;
D O I
10.1007/s11117-020-00789-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove existence, uniqueness, and local regularity of the solution to the Sobolev-Dirichlet problem for quasilinear elliptic equations in the generalized Orlicz-Sobolev spaces on domains, not necessarily bounded, of R-N. Our approach is based on solving the obstacle problem and using the Harnack inequality.
引用
收藏
页码:819 / 841
页数:23
相关论文
共 22 条
[1]   Capacities in Generalized Orlicz Spaces [J].
Baruah, Debangana ;
Harjulehto, Petteri ;
Hasto, Peter .
JOURNAL OF FUNCTION SPACES, 2018, 2018
[2]   Harnack Inequality for Quasilinear Elliptic Equations in Generalized Orlicz-Sobolev Spaces [J].
Benyaiche, Allami ;
Khlifi, Ismail .
POTENTIAL ANALYSIS, 2020, 53 (02) :631-643
[3]   Obstacle and Dirichlet problems on arbitrary nonopen sets in metric spaces, and fine topology [J].
Bjorn, Anders ;
Bjorn, Jana .
REVISTA MATEMATICA IBEROAMERICANA, 2015, 31 (01) :161-214
[4]   Remarks on a nonlinear nonlocal operator in Orlicz spaces [J].
Correa, Ernesto ;
de Pablo, Arturo .
ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) :305-326
[5]   Differential equations of divergence form in Musielak-Sobolev spaces and a sub-supersolution method [J].
Fan, Xianling .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (02) :593-604
[6]   THE OBSTACLE AND DIRICHLET PROBLEMS ASSOCIATED WITH p-HARMONIC FUNCTIONS IN UNBOUNDED SETS IN Rn AND METRIC SPACES [J].
Hansevi, Daniel .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (01) :89-108
[7]   Orlicz Spaces and Generalized Orlicz Spaces [J].
Harjulehto, Petteri ;
Hasto, Peter .
ORLICZ SPACES AND GENERALIZED ORLICZ SPACES, 2019, 2236 :V-+
[8]   Holder regularity of quasiminimizers under generalized growth conditions [J].
Harjulehto, Petteri ;
Hasto, Peter ;
Toivanen, Olli .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (02)
[9]  
Heinonen J., 1993, NONLINEAR POTENTIAL
[10]  
Hewitt E., 1965, REAL ABSTRACT ANAL