Sharp quantitative nonembeddability of the Heisenberg group into superreflexive Banach spaces

被引:15
作者
Austin, Tim [1 ]
Naor, Assaf [1 ]
Tessera, Romain [2 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Ecole Normale Super Lyon, Unite Math Pures & Appl, UMR CNRS 5669, F-69364 Lyon 07, France
关键词
Bi-Lipschitz embedding; Heisenberg group; superreflexive Banach spaces; INEQUALITIES; COMPRESSION; DISTORTION; METRICS;
D O I
10.4171/GGD/193
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H denote the discrete Heisenberg group, equipped with a word metric d(W) associated to some finite symmetric generating set. We show that if (X, parallel to . parallel to) is a p-convex Banach space then for any Lipschitz function f: H -> X there exist x, y is an element of H with d(W) (x, y) arbitrarily large and parallel to f(x) - f(y)parallel to/d(W)(x, y) less than or similar to (log log d(W)(x, y)/log d(W)(x, y))(1/p). (1) We also show that any embedding into X of a ball of radius R >= 4 in H incurs bi-Lipschitz distortion that grows at least as a constant multiple of (log R/log log R)(1/p). (2) Both (1) and (2) are sharp up to the iterated logarithm terms. When X is Hilbert space we obtain a representation-theoretic proof yielding bounds corresponding to (1) and (2) which are sharp up to a universal constant.
引用
收藏
页码:497 / 522
页数:26
相关论文
共 27 条
  • [1] ASSOUAD P, 1983, B SOC MATH FR, V111, P429
  • [2] SHARP UNIFORM CONVEXITY AND SMOOTHNESS INEQUALITIES FOR TRACE NORMS
    BALL, K
    CARLEN, EA
    LIEB, EH
    [J]. INVENTIONES MATHEMATICAE, 1994, 115 (03) : 463 - 482
  • [3] Benyamini Y., 2000, AM MATH SOC C PUBLIC, V1
  • [4] Brunel A., 1972, CR ACAD SCI PARIS A, V275, pA993
  • [5] Burago D., 2001, A Course in Metric Geometry, DOI [10.1090/gsm/033, DOI 10.1090/GSM/033]
  • [6] CHEEGER J., 2006, Nankai Tracts in Mathematics, V11, P129
  • [7] Compression bounds for Lipschitz maps from the Heisenberg group to L 1
    Cheeger, Jeff
    Kleiner, Bruce
    Naor, Assaf
    [J]. ACTA MATHEMATICA, 2011, 207 (02) : 291 - 373
  • [8] Differentiating maps into L1, and the geometry of BV functions
    Cheeger, Jeff
    Kleiner, Bruce
    [J]. ANNALS OF MATHEMATICS, 2010, 171 (02) : 1347 - 1385
  • [9] A (log n)Ω(1) integrality gap for the Sparsest Cut SDP
    Cheeger, Jeff
    Kleiner, Bruce
    Naor, Assaf
    [J]. 2009 50TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE: FOCS 2009, PROCEEDINGS, 2009, : 555 - 564
  • [10] Isometric group actions on hilbert spaces: Growth of cocycles
    de Cornulier, Yves
    Tessera, Romain
    Valette, Alain
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2007, 17 (03) : 770 - 792